SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(177.1 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.48541/dcr.v12.21

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Machines do not decide hate speech: Machine learning, power, and the intersectional approach

[Sammelwerksbeitrag]


Dieser Sammelwerksbeitrag gehört zu folgendem Sammelwerk:
Challenges and perspectives of hate speech research

Kim, Jae Yeon

Abstract

The advent of social media has increased digital content - and, with it, hate speech. Advancements in machine learning help detect online hate speech at scale, but scale is only one part of the problem related to moderating it. Machines do not decide what comprises hate speech, which is part of a so... mehr

The advent of social media has increased digital content - and, with it, hate speech. Advancements in machine learning help detect online hate speech at scale, but scale is only one part of the problem related to moderating it. Machines do not decide what comprises hate speech, which is part of a societal norm. Power relations establish such norms and, thus, determine who can say what comprises hate speech. Without considering this data-generation process, a fair automated hate speech detection system cannot be built. This chapter first examines the relationship between power, hate speech, and machine learning. Then, it examines how the intersectional lens - focusing on power dynamics between and within social groups - helps identify bias in the data sets used to build automated hate speech detection systems.... weniger

Thesaurusschlagwörter
Intersektionalität; Macht; Soziale Medien; Online-Medien; Sprachgebrauch; Algorithmus

Klassifikation
Medieninhalte, Aussagenforschung
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften

Freie Schlagwörter
hate speech; machine learning; bias

Titel Sammelwerk, Herausgeber- oder Konferenzband
Challenges and perspectives of hate speech research

Herausgeber
Strippel, Christian; Paasch-Colberg, Sünje; Emmer, Martin; Trebbe, Joachim

Sprache Dokument
Englisch

Publikationsjahr
2023

Erscheinungsort
Berlin

Seitenangabe
S. 355-369

Schriftenreihe
Digital Communication Research, 12

ISSN
2198-7610

ISBN
978-3-945681-12-1

Status
Erstveröffentlichung; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

Diese Webseite verwendet Cookies. Die Datenschutzerklärung bietet Ihnen weitere Informationen, auch über Ihr Widerspruchsrecht.