Show simple item record

[collection article]

dc.contributor.authorKim, Jae Yeonde
dc.contributor.editorStrippel, Christiande
dc.contributor.editorPaasch-Colberg, Sünjede
dc.contributor.editorEmmer, Martinde
dc.contributor.editorTrebbe, Joachimde
dc.date.accessioned2023-04-21T13:27:48Z
dc.date.available2023-04-21T13:27:48Z
dc.date.issued2023de
dc.identifier.isbn978-3-945681-12-1de
dc.identifier.issn2198-7610de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/86424
dc.description.abstractThe advent of social media has increased digital content - and, with it, hate speech. Advancements in machine learning help detect online hate speech at scale, but scale is only one part of the problem related to moderating it. Machines do not decide what comprises hate speech, which is part of a societal norm. Power relations establish such norms and, thus, determine who can say what comprises hate speech. Without considering this data-generation process, a fair automated hate speech detection system cannot be built. This chapter first examines the relationship between power, hate speech, and machine learning. Then, it examines how the intersectional lens - focusing on power dynamics between and within social groups - helps identify bias in the data sets used to build automated hate speech detection systems.de
dc.languageende
dc.relation.ispartof86272
dc.subject.ddcPublizistische Medien, Journalismus,Verlagswesende
dc.subject.ddcNews media, journalism, publishingen
dc.subject.ddcNaturwissenschaftende
dc.subject.ddcScienceen
dc.subject.otherhate speech; machine learning; biasde
dc.titleMachines do not decide hate speech: Machine learning, power, and the intersectional approachde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.collectionChallenges and perspectives of hate speech researchde
dc.source.volume12de
dc.publisher.countryDEUde
dc.publisher.cityBerlinde
dc.source.seriesDigital Communication Research
dc.subject.classozMedieninhalte, Aussagenforschungde
dc.subject.classozMedia Contents, Content Analysisen
dc.subject.classozNaturwissenschaften, Technik(wissenschaften), angewandte Wissenschaftende
dc.subject.classozNatural Science and Engineering, Applied Sciencesen
dc.subject.thesozIntersektionalitätde
dc.subject.thesozintersectionalityen
dc.subject.thesozMachtde
dc.subject.thesozpoweren
dc.subject.thesozSoziale Mediende
dc.subject.thesozsocial mediaen
dc.subject.thesozOnline-Mediende
dc.subject.thesozonline mediaen
dc.subject.thesozSprachgebrauchde
dc.subject.thesozlanguage usageen
dc.subject.thesozAlgorithmusde
dc.subject.thesozalgorithmen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10083994
internal.identifier.thesoz10046561
internal.identifier.thesoz10094228
internal.identifier.thesoz10064820
internal.identifier.thesoz10041831
internal.identifier.thesoz10035039
dc.type.stockincollectionde
dc.type.documentSammelwerksbeitragde
dc.type.documentcollection articleen
dc.source.pageinfo355-369de
internal.identifier.classoz1080405
internal.identifier.classoz50200
internal.identifier.document25
internal.identifier.ddc070
internal.identifier.ddc500
dc.identifier.doihttps://doi.org/10.48541/dcr.v12.21de
dc.description.pubstatusErstveröffentlichungde
dc.description.pubstatusPrimary Publicationen
internal.identifier.licence16
internal.identifier.pubstatus5
internal.identifier.review1
internal.identifier.series900
dc.subject.classhort10800de
dc.subject.classhort50200de
dc.subject.classhort10500de
dc.subject.classhort10200de
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record