dc.contributor.author | Kim, Jae Yeon | de |
dc.contributor.editor | Strippel, Christian | de |
dc.contributor.editor | Paasch-Colberg, Sünje | de |
dc.contributor.editor | Emmer, Martin | de |
dc.contributor.editor | Trebbe, Joachim | de |
dc.date.accessioned | 2023-04-21T13:27:48Z | |
dc.date.available | 2023-04-21T13:27:48Z | |
dc.date.issued | 2023 | de |
dc.identifier.isbn | 978-3-945681-12-1 | de |
dc.identifier.issn | 2198-7610 | de |
dc.identifier.uri | https://www.ssoar.info/ssoar/handle/document/86424 | |
dc.description.abstract | The advent of social media has increased digital content - and, with it, hate speech. Advancements in machine learning help detect online hate speech at scale, but scale is only one part of the problem related to moderating it. Machines do not decide what comprises hate speech, which is part of a societal norm. Power relations establish such norms and, thus, determine who can say what comprises hate speech. Without considering this data-generation process, a fair automated hate speech detection system cannot be built. This chapter first examines the relationship between power, hate speech, and machine learning. Then, it examines how the intersectional lens - focusing on power dynamics between and within social groups - helps identify bias in the data sets used to build automated hate speech detection systems. | de |
dc.language | en | de |
dc.relation.ispartof | 86272 | |
dc.subject.ddc | Publizistische Medien, Journalismus,Verlagswesen | de |
dc.subject.ddc | News media, journalism, publishing | en |
dc.subject.ddc | Naturwissenschaften | de |
dc.subject.ddc | Science | en |
dc.subject.other | hate speech; machine learning; bias | de |
dc.title | Machines do not decide hate speech: Machine learning, power, and the intersectional approach | de |
dc.description.review | begutachtet (peer reviewed) | de |
dc.description.review | peer reviewed | en |
dc.source.collection | Challenges and perspectives of hate speech research | de |
dc.source.volume | 12 | de |
dc.publisher.country | DEU | de |
dc.publisher.city | Berlin | de |
dc.source.series | Digital Communication Research | |
dc.subject.classoz | Medieninhalte, Aussagenforschung | de |
dc.subject.classoz | Media Contents, Content Analysis | en |
dc.subject.classoz | Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften | de |
dc.subject.classoz | Natural Science and Engineering, Applied Sciences | en |
dc.subject.thesoz | Intersektionalität | de |
dc.subject.thesoz | intersectionality | en |
dc.subject.thesoz | Macht | de |
dc.subject.thesoz | power | en |
dc.subject.thesoz | Soziale Medien | de |
dc.subject.thesoz | social media | en |
dc.subject.thesoz | Online-Medien | de |
dc.subject.thesoz | online media | en |
dc.subject.thesoz | Sprachgebrauch | de |
dc.subject.thesoz | language usage | en |
dc.subject.thesoz | Algorithmus | de |
dc.subject.thesoz | algorithm | en |
dc.rights.licence | Creative Commons - Namensnennung 4.0 | de |
dc.rights.licence | Creative Commons - Attribution 4.0 | en |
internal.status | formal und inhaltlich fertig erschlossen | de |
internal.identifier.thesoz | 10083994 | |
internal.identifier.thesoz | 10046561 | |
internal.identifier.thesoz | 10094228 | |
internal.identifier.thesoz | 10064820 | |
internal.identifier.thesoz | 10041831 | |
internal.identifier.thesoz | 10035039 | |
dc.type.stock | incollection | de |
dc.type.document | Sammelwerksbeitrag | de |
dc.type.document | collection article | en |
dc.source.pageinfo | 355-369 | de |
internal.identifier.classoz | 1080405 | |
internal.identifier.classoz | 50200 | |
internal.identifier.document | 25 | |
internal.identifier.ddc | 070 | |
internal.identifier.ddc | 500 | |
dc.identifier.doi | https://doi.org/10.48541/dcr.v12.21 | de |
dc.description.pubstatus | Erstveröffentlichung | de |
dc.description.pubstatus | Primary Publication | en |
internal.identifier.licence | 16 | |
internal.identifier.pubstatus | 5 | |
internal.identifier.review | 1 | |
internal.identifier.series | 900 | |
dc.subject.classhort | 10800 | de |
dc.subject.classhort | 50200 | de |
dc.subject.classhort | 10500 | de |
dc.subject.classhort | 10200 | de |
internal.pdf.valid | false | |
internal.pdf.wellformed | true | |
internal.pdf.encrypted | false | |
ssoar.urn.registration | false | de |