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Jae Yeon Kim

Machines Do Not Decide Hate Speech

Machine learning, power, and the intersectional approach1

1 Introduction

The advent of social media platforms—such as Twitter, Facebook, and You-
Tube—has increased digital content. Alongside this change, hate speech—defined 
as highly negative and often violent speech that targets historically disadvan-
taged groups (Walker, 1994; Jacobs & Potter, 1998; see also Sponholz in this vol-
ume) – has also increased. In response, social media platforms have leveraged 
machine learning to scale up their efforts to detect and moderate users’ content 
(Gitari et al., 2015; Agrawal & Awekar, 2018; Watanabe et al., 2018; Koushik et al., 
2019; see also Ahmad in this volume). Developing a system that relies less on hu-
man inspection and validation is desirable for these firms because this system’s 
efficiency gains would allow them to grow further and increase profits.

Unfortunately, scale is only part of the problem related to hate speech de-
tection and moderation. Marginalized groups and individuals (e.g., ethnic 
and racial minorities, women, lesbian, gay, bisexual, transgender, and queer 

1 I thank Thomas R. Davidson, Renata Barreto, two anonymous reviewers, and the edi-
tors of this volume for their constructive comments on an earlier draft of this chapter.
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[LGBTQ] people, immigrants, and people with disabilities) are major targets of 
hate speech, which is one reason why many social media platforms cite poten-
tial harm against marginalized people as the main reason to target hate speech 
(Twitter, 2021; Facebook, 2021; YouTube, 2021). A difficulty arises, however, in 
that these historically disadvantaged groups’ speech is more likely than others’ 
to be labeled as hate speech (Sap et al., 2019). Ideally, advancements in machine 
learning should have solved this problem by developing efficient, fair automated 
hate speech detection systems. For instance, the probability of labeling speech 
as hate speech should not depend on whether the speaker is a member of a mar-
ginalized group. Unfortunately, however, many scholars have found that these 
systems are vulnerable to racial, gender, and intersectional biases (Waseem & 
Hovy, 2016; Waseem, 2016; Tatman, 2017; Waseem et al., 2017; Davidson et al., 
2019; Davidson & Bhattacharya, 2020; Kim et al., 2020; Zhou et al., 2021). So, why 
does this paradox persist despite so many technological innovations?

A closer inspection reveals that this vulnerability is not ironic. The meaning 
of hate speech changes over time and across places (Walker, 1994; Gelber, 2002; 
Bleich, 2011; see also Litvinenko in this volume) because shifts in power relations 
determine who can say what comprises hate speech (Binns et al., 2017; Geva et 
al., 2019; Al Kuwatly et al., 2020). If hate speech is a social construct, so is hate 
speech annotation. Automated hate speech detection relies on human-annotat-
ed data, and it faces a challenge in that hate speech annotation concerns decid-
ing whether particular speech violates social norms. However, most norms have 
boundaries that can vary, depending on context. For instance, White people’s 
use of the “n-word” to describe Black people is likely a racial slur, but the same 
word used among African Americans is unlikely to be offensive. These subtleties 
should be acknowledged in building an automated hate speech detection system. 
Otherwise, hate speech algorithms will be more likely to label African Americans’ 
speech as offensive than White peoples’ (see Sap et al., 2019). This “label bias” 
(Hinnefeld et al., 2018; Jiang & Nachum, 2020), defined as the misannotation of 
training data, is a fundamental challenge in building a fair artificial intelligence 
system. Practitioners and scholars define machine learning performance based on 
its prediction accuracy, but if the ground truth that an algorithm predicts is in-
valid, whether its prediction is effective becomes a secondary question.

Without considering this data-generation process, a fair and automated hate 
speech detection system cannot be built. Focusing on the data-generation process 
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requires thinking about power because certain individuals and groups set bound-
aries around hate speech, and these norms influence hate speech annotation. In 
this vein, this chapter first discusses how power, hate speech, and automated hate 
speech detection systems are deeply interconnected. It then examines how the 
intersectional lens (i.e., a focus on power dynamics between and within social 
groups) helps identify bias in the data sets used to build automated hate speech 
detection systems. The chapter enriches the discussion of the obstacles to building 
a fair automated hate speech detection system and how to overcome them.

2 Bias in machine learning and hate speech detection

Bias in a machine learning application is usually defined as a residual catego-
ry of fairness (for a review of the various definitions of fairness in machine learning 
applications, see: Gajane & Pechenizkiy, 2017; Corbett-Davies & Goel, 2018; Mitch-
ell et al., 2021). A machine learning model is biased if it performs unevenly across 
subgroups, based on their protected features, such as race, ethnicity, and sexual 
orientation. Because a model’s uneven performance can be defined in many ways, 
many definitions of fairness exist. For instance, if one’s definition is demographic 
parity (Dwork et al., 2012; Feldman et al., 2015), in the ideal world, a predictive 
model should demonstrate an equally positive rate across demographic groups. 
Another influential metric is equality of opportunity. Under this definition, a ma-
chine learning model is fair, in a binary classification case, if its predicted outcome 
has equal true positive rates across demographic groups when y = 1 and equal 
false-positive rates when y = 0 (Hardt et al., 2016, pp. 1–2). From this conceptual 
perspective, a bias exists in an automated hate speech detection system if a certain 
racial group’s speech is labeled hate speech more often than others’.

These mathematical definitions are convenient tools to assess how predicted 
outcomes may influence the welfare (allocation harms) and representation (repre-
sentational harms) of a particular group compared to other groups’ (Crawford, 2017; 
Barocas et al., 2020). Nevertheless, these “outcome-focused” indicators are limited 
because they do not inform researchers of how these outcomes were generated.

The concern regarding the data-generation process is particularly critical to 
understanding the elements missing from the current discussion on bias and 
fairness in machine learning. In empirical social science research, if an outcome 
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is biased racially (e.g., racial disparity in income and poverty), an attribute of 
race influenced the outcome (Holland, 1986; Greiner & Rubin, 2011; Sen & Wasow, 
2016). For example, Bertrand and Mullainathan (2004) measured racial discrimi-
nation in the labor market by sending fictitious resumes in which job applicants’ 
names varied. The field-experiment results indicated that candidates with White-
sounding names (e.g., Emily and Greg) received more callbacks for interviews 
than Black-sounding names (e.g., Lakisha and Jamal). In this example, researchers 
were interested in estimating the effect of name attributes on resumes that may 
cause people to perceive a job applicant’s race differently. In contrast, if machine 
learning applications’ outcomes are biased racially, their models perform poorly 
for one racial group compared to others. Unlike in the earlier social science ex-
ample, in this case, the machine learning literature does not focus on what caused 
the disparity in model performance across demographic groups that could exa-
cerbate existing socioeconomic inequities (Kasy & Abebe, 2020).

To understand bias in machine learning applications and its origins, schol-
ars and practitioners must understand that machine learning applications are 
embedded in society (Martin, 2019). Machine learning models depend on data 
for their performance, and a particular algorithm may outperform others, de-
pending on the characteristics of the data sets it uses and the tasks it performs. 
Humans are involved in both generating training data and defining these tasks, 
and these decisions are susceptible to long-standing explicit and implicit human 
biases. Therefore, bias in machine learning applications, including automated 
hate-detection systems, encompasses a wide spectrum of societal and historical 
biases (Garg et al., 2018; Jo & Gebru, 2020). No panacea can solve this problem, and 
only a careful investigation of underlying causes can yield promising solutions.

Unfortunately, most solutions that have been presented focus on fixing the 
most immediate issue. For example, IBM released the “Diversity in Faces” data set 
in 2019 in response to criticisms of bias in the commercial use of computer vision 
algorithms because these algorithms discriminate against Black women (Buolam-
wini & Gebru, 2018). This effort is laudable, but an exclusive focus on training data 
sets insufficiently addressed the bias issue fully because representation bias is 
only one element among a broad set of societal and historical biases (Mehrabi et 
al., 2021). The more fundamental issue is not that training data sets lack sufficient 
amounts of Black women’s faces but, rather, why this practice was accepted and 
not questioned in the first place. The main concern in this regard is power—not 
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the extent of observations related to different racial groups. Therefore, the larger 
social environment that defines what kinds of training data and labeling process-
es are acceptable must be investigated. This investigation is particularly neces-
sary when training data are generated through normative judgments, which are 
highly susceptible to bias (see Bocian et al., 2020, for a recent review on this sub-
ject in social psychology).

Measurement is an issue related to this label bias, and it is also fundamen-
tal to making automated hate speech systems fair. Objective ground truth in hate 
speech data sets is difficult to define. If the goal of building a predictive model 
is differentiating between cats and dogs, a consensus could easily be reached on 
essential features that help make sound predictions (Deng et al., 2009). However, 
hate speech is part of a societal norm. What comprises hate speech varies across 
groups and over time, and its definition has become a contested political issue 
(Walker, 1994; Gelber, 2002; Bleich, 2011). Power relations establish such norms 
and, thus, determine who can say what comprises hate speech. Political stakes 
are involved in deciding that some speech is acceptable and other speech is not. 
If my group’s speech is labeled hate speech and other groups’ is not, the odds of 
my speech eliciting a political and legal toll are higher than others’. In a hierar-
chical society, power relations are unequal, and these relations determine who 
shapes rules and norms (Lukes, 1974). Therefore, a subordinate group’s speech is 
more likely to be labeled hate speech than a dominant group’s (Maass, 1999; Col-
lins, 2002; Campbell-Kibler, 2009).

In the machine learning literature, researchers have circumvented this mea-
surement problem by assuming either that well-defined ground truth exists or 
that the best approximation is available through social consensus (Dwork et al., 
2012, p. 214). This assumption is convenient for building a compact theory, but it 
presents an important obstacle to be acknowledged in practice. To acknowledge 
the relationship between power, normative judgments, and hate speech labeling, 
researchers should recognize how the definition of hate speech is established so-
cially. If ground truth is generated through an unequal social process, then making 
predictive models’ performance similar across demographic groups is insufficient 
to make an automated hate speech detection system fair (Blodgett et al., 2020).

In principle, fairness in hate speech detection systems can be accomplished by 
promoting greater transparency and inclusion in building such detection systems.
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2.1 Transparency

Researchers should acknowledge that hate speech is a contested concept 
and that some individuals and groups have more power to define hate speech than 
others. They should also provide a position statement in their research that de-
scribes why they define hate speech in a particular way within the context of their 
research background. For instance, researchers can construct hate speech as a cat-
egorical or continuous variable, or as a single-dimensional or multi-dimensional 
concept. They should explain why their definition is more appropriate to their 
research than other definitions. Model cards—a documentation tool for fair ma-
chine learning—helpfully illustrate this approach (Mitchell et al., 2019).

2.2 Inclusion

Furthermore, researchers should include people most likely to be harmed 
from automating hate speech detection in the development process so that they 
can provide critical feedback on data-collection and -annotation procedures 
(Frey et al., 2020; Halfaker & Geiger, 2020; Katell et al., 2020; Patton et al., 2020). 
This participatory approach is essential from ethical and scientific perspectives. 
These individuals possess deep knowledge of what speech targets them and what 
part of their speech practices could be mislabeled as hate speech.

Practicing these principles requires considering power in two steps: first, how 
does the dominant group define societal norms (between-group power relations), 
and second, how do these societal norms marginalize particular segments of sub-
ordinate groups (within-group power relations)? Clarifying these points helps 
identify which of researchers’ assumptions should be transparent and which mem-
bers of marginalized groups should be invited as research partners. In the next sec-
tion, I discuss how the intersectional approach helps raise this type of awareness.

3 Why use an intersectional approach?

The intersectional approach helps explain what shapes people’s perception 
of hate speech and how this bias is baked into data sets used to train hate speech 
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detection algorithms. This approach to hate speech differs from the approach 
that focuses on hate speech analysis at the content level, according to which hate 
speech can be intersubjectively defined based on certain characteristics (for a dis-
cussion of distinctions between these approaches, see, e.g., Sellars, 2016, pp. 14–
18). It also differs from a similar approach that focuses on social identity theory 
(Tajfel, 1970; Tajfel & Turner, 1979; Brown et al., 1980; Perreault & Bourhis, 1999). 
According to the social identity approach, people are easily motivated to define 
group boundaries, favor their in-group, and denigrate their out-group; as a result, 
annotators are more likely to label speech by their out-group’s members more 
negatively than speech by their in-group’s members (Binns et al., 2017; Geva et 
al., 2019; Al Kuwatly et al., 2020). The solution to reducing label bias in this con-
text is to recruit members of different groups as annotators (e.g., White and Black 
people, men and women). Then, when aggregated, the biases of annotators from 
different backgrounds would cancel each other out.

However, this approach raises another question: How should we define diver-
sity? The above approach works only if the members of a particular group have 
strongly homogeneous opinions on hate speech. In practice, homogeneity means 
that if a researcher is investigating racial bias, then they should assume that other 
forms of bias—such as gender bias—do not exist. This assumption is unwarrant-
ed if different axes of discrimination (e.g., race, class, and gender) intersect and 
make a segment of a subordinate group more marginalized than other segments.

For instance, Cohen (1999) demonstrated how the intersection of race and 
sexuality explains African American communities’ unwillingness to mobilize 
against the acquired immunodeficiency syndrome (AIDS) epidemic despite these 
communities’ long history of involvement in racial justice movements. Racial 
elites (e.g., Black pastors) intentionally avoided including the AIDS epidemic in 
their political agendas because they did not want their groups’ moral reputations 
tainted by the stigma attached to Black LGBTQ communities and their presumed 
relationship with the AIDS epidemic.

Although Cohen’s research does not speak to hate speech analysis directly, its 
main insight—marginalization within a marginalized group—is relevant. Suppose 
a hate speech data set contains a significant volume of hate speech that targets 
members of the Black LGBTQ community in the United States and researchers 
recruit racially diverse annotators to build an automated hate speech detection 
system. Such an initiative fails to consider the gender dimension of the potential 



362

J. Y. Kim

bias issues within a racially marginalized group. Consequently, such an automat-
ed hate speech detection system remains vulnerable to societal and historical 
biases because hate speech targeting Black LGBTQ communities is highly likely 
not to be labeled hate speech. Even Black annotators might avoid labeling such 
attacks as hate speech because their community leaders had not addressed this 
problem publicly. These annotators might not recognize how problematic this 
form of speech can be.

In this case, the key to understanding the data-generation process is to think 
about power relations in the contexts of between- and within-group power re-
lations (Crenshaw, 1990; Blodgett et al., 2020; Kasy & Abebe, 2020). A dominant 
group creates prevailing societal norms that condone certain sexual relations but 
not others. These norms define which thoughts, speech, and behaviors are ac-
ceptable within subordinate communities if they want to maintain their (moral) 
reputations in society at large. Depending on how this boundary is constructed 
and reproduced, some aspects of marginalization may be acknowledged more 
publicly than others.

4 Concluding remarks

Making fair automated hate speech detection systems requires a deeper 
understanding of who decides what comprises hate speech. Machine learning al-
gorithms are powerful tools for detecting hate speech at scale, but an oversight 
remains. These models are trained with labeled data that are susceptible to his-
torical and societal biases—a particularly acute problem in hate speech analysis 
because labeling hate speech means deciding what speech violates social norms. 
But who decides what comprises hate speech? If practitioners and scholars do not 
understand how people perceive hate speech, some groups’ speech will be more 
protected than others.

To tackle this problem, I propose two principles. First, the transparency principle 
emphasizes acknowledging hate speech as a contested concept and understanding 
that some people have more power over its definition than others. Providing a posi-
tion statement that describes why one hate speech definition is preferred over others 
is important to increase the transparency of the model-building process. Second, 
the inclusion principle underscores that including people who are most likely to be 
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harmed by hate speech in the creation of automated hate speech detection is crucial 
so that they can influence data-collection and -annotation procedures (Frey et al., 
2020; Halfaker & Geiger, 2020; Katell et al., 2020; Patton et al., 2020). This participa-
tory approach not only improves hate speech detection systems’ accuracy but also 
makes the whole model-building process more democratic.

In practice, taking an intersectional approach (i.e., focusing on power dynam-
ics between and within social groups) is essential to understanding how people’s 
perceptions of hate speech influence their data annotation. For practical and 
research purposes, assuming that only one form of bias (e.g., racial bias) exists, 
while other forms (e.g., gender bias) do not exist, might be convenient. However, 
in reality, these various bias axes intersect, causing one segment of a historical-
ly disadvantaged group to suffer from marginalization more than other group 
members. For this reason, understanding hate speech requires understanding 
marginalization in both between- and within-group contexts (Kim et al., 2020).

Jae Yeon Kim is Assistant Professor of Data Science at the KDI School of Public Policy and 
Management, South Korea, and an affiliated researcher of the SNF Agora Institute at Johns 
Hopkins University, USA. https://orcid.org/0000-0002-6533-7910
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