SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1016/j.chbr.2023.100343

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

How algorithmically curated online environments influence users' political polarization: Results from two experiments with panel data

[journal article]

Kelm, Ole
Neumann, Tim
Behrendt, Maike
Brenneis, Markus
Gerl, Katharina
Marschall, Stefan
Meißner, Florian
Harmeling, Stefan
Vowe, Gerhard
Ziegele, Marc

Abstract

Social media platforms are often accused of disproportionally exposing their users to like-minded opinions, thereby fueling political polarization. However, empirical evidence of this causal relationship is inconsistent at best. One reason could be that many previous studies were unable to separate ... view more

Social media platforms are often accused of disproportionally exposing their users to like-minded opinions, thereby fueling political polarization. However, empirical evidence of this causal relationship is inconsistent at best. One reason could be that many previous studies were unable to separate the effects caused by individual exposure to like-minded content from the effects caused by the algorithms themselves. This study presents results from two quasi-experiments in which participants were exposed either to algorithmically selected or randomly selected arguments that were either in line or in contrast with their attitudes on two different topics. The results reveal that exposure to like-minded arguments increased participants' attitude polarization and affective polarization more intensely than exposure to opposing arguments. Yet, contrary to popular expectations, these effects were not amplified by algorithmic selection. Still, for one topic, exposure to algorithmically selected arguments led to slightly stronger attitude polarization than randomly selected arguments.... view less

Keywords
online media; social media; algorithm; opinion formation; political attitude; polarization; Federal Republic of Germany

Classification
Interactive, electronic Media
Impact Research, Recipient Research

Free Keywords
Online experiments; Filter bubble; Panel data

Document language
English

Publication Year
2023

Journal
Computers in Human Behavior Reports (2023) 12

ISSN
2451-9588

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.