dc.contributor.author | Kelm, Ole | de |
dc.contributor.author | Neumann, Tim | de |
dc.contributor.author | Behrendt, Maike | de |
dc.contributor.author | Brenneis, Markus | de |
dc.contributor.author | Gerl, Katharina | de |
dc.contributor.author | Marschall, Stefan | de |
dc.contributor.author | Meißner, Florian | de |
dc.contributor.author | Harmeling, Stefan | de |
dc.contributor.author | Vowe, Gerhard | de |
dc.contributor.author | Ziegele, Marc | de |
dc.date.accessioned | 2024-12-06T15:19:20Z | |
dc.date.available | 2024-12-06T15:19:20Z | |
dc.date.issued | 2023 | de |
dc.identifier.issn | 2451-9588 | de |
dc.identifier.uri | https://www.ssoar.info/ssoar/handle/document/98332 | |
dc.description.abstract | Social media platforms are often accused of disproportionally exposing their users to like-minded opinions, thereby fueling political polarization. However, empirical evidence of this causal relationship is inconsistent at best. One reason could be that many previous studies were unable to separate the effects caused by individual exposure to like-minded content from the effects caused by the algorithms themselves. This study presents results from two quasi-experiments in which participants were exposed either to algorithmically selected or randomly selected arguments that were either in line or in contrast with their attitudes on two different topics. The results reveal that exposure to like-minded arguments increased participants' attitude polarization and affective polarization more intensely than exposure to opposing arguments. Yet, contrary to popular expectations, these effects were not amplified by algorithmic selection. Still, for one topic, exposure to algorithmically selected arguments led to slightly stronger attitude polarization than randomly selected arguments. | de |
dc.language | en | de |
dc.subject.ddc | Publizistische Medien, Journalismus,Verlagswesen | de |
dc.subject.ddc | News media, journalism, publishing | en |
dc.subject.other | Online experiments; Filter bubble; Panel data | de |
dc.title | How algorithmically curated online environments influence users' political polarization: Results from two experiments with panel data | de |
dc.description.review | begutachtet (peer reviewed) | de |
dc.description.review | peer reviewed | en |
dc.source.journal | Computers in Human Behavior Reports | |
dc.publisher.country | NLD | de |
dc.source.issue | 12 | de |
dc.subject.classoz | interaktive, elektronische Medien | de |
dc.subject.classoz | Interactive, electronic Media | en |
dc.subject.classoz | Wirkungsforschung, Rezipientenforschung | de |
dc.subject.classoz | Impact Research, Recipient Research | en |
dc.subject.thesoz | Online-Medien | de |
dc.subject.thesoz | online media | en |
dc.subject.thesoz | Soziale Medien | de |
dc.subject.thesoz | social media | en |
dc.subject.thesoz | Algorithmus | de |
dc.subject.thesoz | algorithm | en |
dc.subject.thesoz | Meinungsbildung | de |
dc.subject.thesoz | opinion formation | en |
dc.subject.thesoz | politische Einstellung | de |
dc.subject.thesoz | political attitude | en |
dc.subject.thesoz | Polarisierung | de |
dc.subject.thesoz | polarization | en |
dc.subject.thesoz | Bundesrepublik Deutschland | de |
dc.subject.thesoz | Federal Republic of Germany | en |
dc.rights.licence | Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0 | de |
dc.rights.licence | Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0 | en |
ssoar.contributor.institution | Hochschule Macromedia | de |
internal.status | formal und inhaltlich fertig erschlossen | de |
internal.identifier.thesoz | 10064820 | |
internal.identifier.thesoz | 10094228 | |
internal.identifier.thesoz | 10035039 | |
internal.identifier.thesoz | 10041758 | |
internal.identifier.thesoz | 10041739 | |
internal.identifier.thesoz | 10063279 | |
internal.identifier.thesoz | 10037571 | |
dc.type.stock | article | de |
dc.type.document | Zeitschriftenartikel | de |
dc.type.document | journal article | en |
internal.identifier.classoz | 1080404 | |
internal.identifier.classoz | 1080407 | |
internal.identifier.journal | 2292 | |
internal.identifier.document | 32 | |
internal.identifier.ddc | 070 | |
dc.identifier.doi | https://doi.org/10.1016/j.chbr.2023.100343 | de |
dc.description.pubstatus | Veröffentlichungsversion | de |
dc.description.pubstatus | Published Version | en |
internal.identifier.licence | 20 | |
internal.identifier.pubstatus | 1 | |
internal.identifier.review | 1 | |
dc.subject.classhort | 10800 | de |
internal.pdf.valid | false | |
internal.pdf.wellformed | true | |
internal.pdf.encrypted | false | |
ssoar.urn.registration | false | de |