SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(14.01Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-97676

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Grundlagenwissen zu Künstlicher Intelligenz von angehenden Lehrkräften: Modellbasierte Testentwicklung und Validierung

[phd thesis]

Schmidt, Jacqueline Marie-Charlotte

Abstract

In der Dissertation wird ausgehend von der zunehmenden Relevanz von Künstlicher Intelligenz (KI) im Rahmen digitaler Transformationsprozesse ein Strukturmodell für KI-bezogene Kompetenzfacetten (angehender) Lehrkräfte im berufsbildenden Bereich entwickelt. Das Wissen zu KI nimmt dabei in Anlehnung a... view more

In der Dissertation wird ausgehend von der zunehmenden Relevanz von Künstlicher Intelligenz (KI) im Rahmen digitaler Transformationsprozesse ein Strukturmodell für KI-bezogene Kompetenzfacetten (angehender) Lehrkräfte im berufsbildenden Bereich entwickelt. Das Wissen zu KI nimmt dabei in Anlehnung an die Professionalisierungsforschung eine zentrale Rolle ein. Im Rahmen der Arbeit wird der Frage nachgegangen, wie das Grundlagenwissen (angehender) Lehrkräfte theoretisch modelliert und empirisch erfasst werden kann. Das entwickelte Testinstrument wurde anhand eines quantitativen Studiendesigns umfassend validiert.... view less

Keywords
digitalization; artificial intelligence; teacher training; vocational education; competence

Classification
Training, Teaching and Studying, Professional Organizations of Education and Pedagogics

Free Keywords
KI-bezogene Kompetenzfacetten; angehender Lehrkräfte; digitaler Transformationsprozess

Document language
German

Publication Year
2024

Publisher
wbv Media GmbH & Co. KG

City
Bielefeld

Page/Pages
236 p.

Series
Berufsbildung, Arbeit und Innovation - Dissertationen und Habilitationen, 79

DOI
https://doi.org/10.3278/9783763976539

ISBN
978-3-7639-7653-9

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-ShareAlike 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.