SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(767.7 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-91946-6

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Data Fusion for Joining Income and Consumtion Information using Different Donor-Recipient Distance Metrics

[Zeitschriftenartikel]

Meinfelder, Florian
Schaller, Jannik

Abstract

Data fusion describes the method of combining data from (at least) two initially independent data sources to allow for joint analysis of variables which are not jointly observed. The fundamental idea is to base inference on identifying assumptions, and on common variables which provide information t... mehr

Data fusion describes the method of combining data from (at least) two initially independent data sources to allow for joint analysis of variables which are not jointly observed. The fundamental idea is to base inference on identifying assumptions, and on common variables which provide information that is jointly observed in all the data sources. A popular class of methods dealing with this particular missing-data problem in practice is based on covariate-based nearest neighbour matching, whereas more flexible semi- or even fully parametric approaches seem underrepresented in applied data fusion. In this article we compare two different approaches of nearest neighbour hot deck matching: One, Random Hot Deck, is a variant of the covariate-based matching methods which was proposed by Eurostat, and can be considered as a 'classical' statistical matching method, whereas the alternative approach is based on Predictive Mean Matching. We discuss results from a simulation study where we deviate from previous analyses of marginal distributions and consider joint distributions of fusion variables instead, and our findings suggest that Predictive Mean Matching tends to outperform Random Hot Deck.... weniger

Thesaurusschlagwörter
Daten; Mittelwert; Statistik; Einkommensverteilung; Verbraucher; Simulation

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Forschungsarten der Sozialforschung

Freie Schlagwörter
statistical matching; missing data; predictive mean matching; nearest neighbour Imputation; missing-by-design pattern; EU-SILC 2015

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 509-532

Zeitschriftentitel
Journal of Official Statistics, 38 (2022) 2

DOI
https://doi.org/10.2478/jos-2022-0024

ISSN
2001-7367

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.