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Data Fusion for Joining Income and Consumtion
Information using Different Donor-Recipient Distance

Metrics

Florian Meinfelder1 and Jannik Schaller2

Data fusion describes the method of combining data from (at least) two initially independent
data sources to allow for joint analysis of variables which are not jointly observed. The
fundamental idea is to base inference on identifying assumptions, and on common variables
which provide information that is jointly observed in all the data sources. A popular class of
methods dealing with this particular missing-data problem in practice is based on covariate-
based nearest neighbour matching, whereas more flexible semi- or even fully parametric
approaches seem underrepresented in applied data fusion. In this article we compare two
different approaches of nearest neighbour hot deck matching: One, Random Hot Deck, is a
variant of the covariate-based matching methods which was proposed by Eurostat, and can be
considered as a ’classical’ statistical matching method, whereas the alternative approach is
based on Predictive Mean Matching. We discuss results from a simulation study where we
deviate from previous analyses of marginal distributions and consider joint distributions of
fusion variables instead, and our findings suggest that Predictive Mean Matching tends to
outperform Random Hot Deck.

Key words: Statistical matching; missing data; predictive mean matching; nearest neighbour
Imputation; missing-by-design pattern.

1. Introduction

Data fusion, also known as statistical matching, is a perfect example of secondary data

analysis. The objective of a data fusion is to jointly analyse variables from (at least) two

different data sources which were not jointly observed, and each of the data sources

originally served a different purpose.

The studies of the National Statistical Institutes (NSIs) are often committed to a particular

objective such as measuring, for example, consumption expenditure of private households,

in great detail. If the need arises to incorporate and combine information from several

objectives, data fusion is a standard method to provide a microdata source, where these

different types of information are artificially joined on an individual or household level.
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In 2009, the Stiglitz-Sen-Fitoussi commission (Stiglitz et al. 2009) published a report on

welfare and its components, which led to various approaches among NSIs within the

European Union to measure the dimensions ’income’, ’consumption’ and ’wealth’ (ICW) as

proposed by the commission. Countries which do not measure all three dimensions within a

single official statistics data source have been exploring data fusion methods in order to

provide a corresponding data base (see e.g., Donatiello et al. 2014; Uçcar and Betti 2016;

Albayrak and Masterson 2017; Dalla Chiara et al. 2019). The proposed data fusion methods

are largely based on the research conducted by the European Statistical Office (Eurostat)

(Lamarche 2017, 2018) and several NSIs (see e.g., D’Orazio et al. 2018) on statistically

matching data from EU-SILC (European Union Statistics on Income and Living

Conditions) with data from the HBS (Household Budget Survey). By matching EU-SILC

and HBS, Eurostat and the NSIs pursue the goal to provide joint information about the

household income details observed from EU-SILC and the household consumption

expenditures observed from HBS. The original focus of their analyses had been on

preserving marginal distributions and one of the preliminary findings is that Random Hot

Deck (RHD), a classical nearest neighbour matching technique, performs very well in terms

of preserving marginal distributions (Webber and Tonkin 2013; Serafino and Tonkin 2017;

Lamarche 2018). However, the preservation of marginal distributions does not give any hint

about whether the joint distributions of the variables not jointly observed, income and

consumption expenditures in our case, is adequately reproduced in the matched data file.

Our research connects by extending the analysis objective to investigating associations

between different variables, and we will explain in the following, why RHD yields good results

for marginal distributions, but not necessarily for conditional or joint distributions. In addition,

we aim to emphasize with our research the importance of considering not only strictly non-

parametric data fusion methods, typically based on covariate-based nearest neighbour

matching, which currently seems to be the default approach to data fusion in practice, although

parts of the literature also discussed parametric variants (see e.g., Van der Putten et al. 2002;

Donatiello et al. 2014; Lamarche 2018). Nearest neighbour methods have some appealing

properties, but since data fusion is a particular missing-data problem, we recommend a more

flexible approach to exploring various imputation methods in applied data fusion settings.

Therefore, we investigate the properties of an imputation method called Predictive

Mean Matching (PMM) (Rubin 1986) which was extended by Little (1988) (who also

coined the term Predictive Mean Matching) to multivariate data situations. PMM is a semi-

parametric method which uses a parametric (typically linear) model to establish the basis

for the subsequent matching. This approach is compared as a data fusion method to RHD

proposed by Eurostat, and can be seen as a proponent for more parametric alternatives.

While both, RHD and PMM, are based on nearest neighbour hot deck matching, the

underlying principles are very different, as RHD matches on the combined distances of the

covariates, jointly observed in both studies, whereas PMM matches on the combined

distances of model-based predictions of the variables which are observed in only one of

the two studies. While these two methods do not exhaust the plethora of available nearest

neighbour matching variants, they can be considered as archetypical for what we like to

refer to as covariate-based matching and model-based matching. In order to discuss

benefits and drawbacks of both data fusion archetypes, we compare the performance of

Random Hot Deck and Predictive Mean Matching within a simulation study. As an
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extension to the research conducted by Eurostat and the NSIs, we investigate primarily

joint distributions and associations between different variables, especially between the

variables not jointly observed.

To meet our objective of comparing the data fusion performance of RHD and PMM, we

structure our article as follows: Section 2 contains a general overview of data fusion,

followed by an in-depth description of the two aforementioned algorithms in Section 3.

We investigate the properties of RHD and PMM as data fusion methods within a

simulation study based on Scientific Use Files (SUFs) data from the EU-SILC study which

we modify to mimic a data fusion situation. The setup of this stimulation study is described

in Section 4 and we discuss the corresponding results in Section 5. We conclude the

findings of our research in the final Section 6.

2. Methodological Aspects of Data Fusion Scenarios

In this section we introduce the basic notation used throughout this article, and we introduce

perspectives on data fusion from statistical literature as well as the practitioners’ perspective

which often relies on the identification of ’statistical twins’ or nearest neighbours.

2.1. Theoretical Background

Following the suggestion by Rubin (1986) to consider data fusion as file concatenation

leads to the particular missing-by-design pattern (see e.g., Rässler 2002, chap. 4), and

Figure 1 displays this schematic pattern if we stack two originally independent data

sources A and B. The blank parts are missing and the corresponding variables were

initially not part of the particular study, that is, variables Z are not observed in the first

original study A (upper part of the stacked data set), and variables Y are not observed in the

second original study B (lower part of the stacked data set). In this respect, we denote

variables which are observed in both studies as X in the following, and we further denote

variables relevant for the analysis which are only part of study A (but unobserved in study

B) as Y and, analogously, variables required for the analysis which are only observed in

study B (but unobserved in study A) as Z.

A typical data fusion analysis objective is based on variables Y and Z, and from the

schematic overview it is apparent that we need identifying assumptions for the joint

distribution of f(Y, Z). In most imputation variants, either fully parametric or matching-based,

an implicit Conditional Independence Assumption (CIA) is made, which was first pointed out

X

A

B

Y Z

Fig. 1. Missing data pattern of a data fusion situation.
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by Sims (1972) in a comment on a technical report (Okner 1972). It states that any association

between Y and Z is a function of X, that is, f(YjX, Z) ¼ f(YjX) and, analogously,

f(ZjX,Y) ¼ f(ZjX). This, for instance, yields a correlation of zero between Y and Z if

conditioned on X. Furthermore, the CIA encases the Missing at Random (MAR) assumption

and, therefore, also comprises ignorability (Koller-Meinfelder 2009). For details on different

missing data mechanisms, see Little and Rubin (2020, chap. 1). We will, however, not

consider violations of distributional assumptions for f(Y, Z) as part of this research. Rodgers

(1984) extensively discussed the shortcomings of the CIA within a comprehensive simulation

study, but in recent years several publications have addressed this issue by proposing to

introduce auxiliary information (see e.g., Singh et al. 1993; Zhang 2015; Fosdick et al. 2016).

Imputation methods under non-ignorable missing data, however, have been discussed by

Pfeffermann and Sikov (2011) and Little and Rubin (2020, chap. 15).

2.2. Implementation in Practice

Technically, we can apply any sophisticated method for handling missing data to this

artificially created missing-by-design data situation, such as fully parametric multiple

imputation or single imputation with variance correction, or Maximum Likelihood-based

methods. The majority of empirical data fusions seem, however, to be based on variants of

covariate-based nearest neighbour matching (see e.g., Koschnick 1995; D’Orazio et al.

2006a, sec 2.4), and we assume that there are at least two reasons for it:

(1) The synonymous term ’Statistical Matching’ already insinuates matching-based

methods to the practitioners as the most viable alternative (although this might not

always be the case).

(2) The concept of identifying a ’statistical twin’ makes data fusion appear as some kind

of ’fuzzy’ record linkage.

Although the missing-data pattern displayed in Figure 1 suggests that both missing parts

could be imputed within the new stacked data set, it is far more common that only one of

the original studies is used for data fusion analysis. Staying true to the matching concept,

this study is labeled the recipient study, whereas we refer to the study that ’donates’ data

from its observations as the donor study (see e.g., Gabler 1997; Van der Putten et al. 2002).

This applies to the content-based aspect of this article, where EU-SILC represents the

recipient study that has to be extended by the missing consumption expenditures, while

HBS donates the household consumption information and, therefore, serves as the donor

study (see e.g., Serafino and Tonkin 2017). This implies that, referring to the missing-by-

design pattern displayed in Figure 1, study A equals EU-SILC with the observed income

variables Y and study B corresponds to the HBS with the observed consumption variables

Z. The aim is to expand the EU-SILC data file by the household consumption expenditures,

that is, imputing the missing Z information in study A in order to provide a joint analysis of

the income (Y) and consumption (Z) variables originally not jointly observed.

2.3. Overview of Traditional Data Fusion Algorithms

Traditionally, as already pointed out, data fusions are conducted using some form of

covariate-based nearest neighbour matching methods (see e.g., Rodgers 1984; Koschnick
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1995). These algorithms match data on observations that are as close as possible with

regard to their common X characteristics, that is, by imputing the missing Z values in the

recipient data file by the observed Z values of the most similar donor observation

according to the common X variables (see e.g., Van der Putten et al. 2002; Kiesl and

Rässler 2005). Usually, either a certain distance metric is applied that accounts for the

different scale levels of X, for example, the distance proposed by Gower (1971), or all X

variables will be categorised such that (alleged exact) matches can be identified in both

data files (D’Orazio et al. 2006a, sec. 2.4). In the latter case, only zero distances between

the X variables are considered. In addition, however, there also exist fully parametric

approaches. Such methods are based on regressions of Z on X within the donor file and

subsequently estimate the missing Z values in the recipient file by means of the computed

regression parameters (see e.g., D’Orazio et al. 2006a, sec. 2.2; Gilula et al. 2006).

While coviarate-based methods are non-parametric as they are not subject to

distributional assumptions, PMM can be considered as a mixed (or semi-parametric)

method between coviarate-based algorithms and fully parametric approaches. Note that

Eurostat discusses different data fusion methods in previous working papers as well, and

refers to semi-parametric algorithms as mixed methods between non-parametric and

parametric approaches (Leulescu and Agafitei 2013; Webber and Tonkin 2013; Serafino

and Tonkin 2017). However, their ’mixed methods’ are slightly different to the

multivariate variant of PMM proposed by Little (1988), as they consider ranks to identify

suitable matches.

Nearest neighbour methods also spawn various other interesting research problems,

such as balancing the usage of donors using constrained matching (see e.g., Rodgers 1984;

Rubin 1986) or selecting donors from k Nearest Neighbours (see e.g., Chen and Shao

2000; Andridge and Little 2010; Beretta and Santaniello 2016). For the sake of simplicity,

we do not explicitly address these issues in the following, although the setup of our

simulations could be extended accordingly.

3. Implemented Data Fusion Algorithms

In this section we will provide some details on the two methods, RHD and PMM, we want

to compare within the subsequent Monte Carlo study, before we focus on describing the

aforementioned differences of both methods in detail, and how these differences might

affect the analysis results of our MC study.

3.1. Random Hot Deck (RHD)

In general, RHD randomly assigns observations from the donor file to observations of the

recipient file. The missing Z values for each recipient record are then imputed by the

corresponding Z values of its assigned donor observation. However, the random allocation

between recipient and donor observations is usually carried out within homogeneous

subgroups, for example only within the same gender category. Thus, in this example,

female (male) donor observations can only be assigned to female (male) recipient

observations (D’Orazio et al. 2006a, sec. 2.4.1).

We also apply RHD within homogeneous subgroups analogously to Eurostat (2018) and

Lamarche (2018). Note that Lamarche (2018) is currently under review and, therefore,
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unpublished yet. A preliminary and freely accessible version of this article is Lamarche

(2017). For any specific variable Zr (with r ¼ 1; : : :; pÞ of Z ¼ ðZ1; : : :; ZpÞ stemming

from the donor data file, the detailed fusion algorithm can be described as follows: First, in

order to identify relevant matching classes that serve as homogeneous subgroups, all

common variables X ¼ ðX1; : : :;XpÞ that have a metric scale level are categorised. For

example, age is transferred to rough age groups or income to income quintiles. Thus, all X

variables are at most ordinal scaled and only zero distances between the recipient and the

donor observations are allowed. Subsequently, a stepwise selection based on OLS

regression of Zr on X in the donor file is implemented in order to select common X

variables that have an acceptable explanatory power for Zr. Along the stepwise-selected X

variables, an auxiliary variable is created that concatenates the respective values of X for

each observation in the recipient and the donor file. This results in a stratum characteristic

for each donor and recipient record that form the homogeneous subgroups. The random

assignment between the donor and the recipient observations is only conducted within the

same stratum, that is, every donor record is only permitted to be matched with a recipient

record that has exactly the same (categorical) characteristics with respect to the stepwise-

selected X variables (Eurostat 2018; Lamarche 2018).

In order to ensure enough donor observations ðsl;donÞ compared to recipient records

ðsl;recÞ for each stratum level l, the following threshold is set:

sl;rec

sl;don

$ c�
srec

sdon

;

where the constant c is set as a rule of thumb to c ¼ 3 (see Lamarche 2018, 13). In the case

of equal sample sizes of the recipient and the donor data file, the threshold means that a

maximum of three recipients can be assigned to one donor. As long as 90% of the sample

do not exceed this threshold, the stepwise-selected X variables are retained and the

Random Hot Deck within each subgroup is performed. Otherwise, the process will be

reiterated, with the maximum subset of the X variables to be selected by the stepwise

selection being reduced by 1 for each iteration step. The maximum subset of X variables is

controlled by the nvmax argument within the regsubsets() function from the leaps

package (Lumley and Miller 2020). If there are still recipients left who cannot be assigned

to a donor, a second round of allocation is conducted with c ¼ 2 and without a tolerance

specification (Eurostat 2018; Lamarche 2018).

3.2. Predictive Mean Matching (PMM)

Predictive Mean Matching is not frequently discussed as a dedicated data fusion method,

but it has become popular as an imputation method in general, and is the default method

for metric-scale variables in the R package mice (Van Buuren 2021). The method was first

introduced by Rubin (1986) and Little (1988) for the simultaneous imputation of

continuous variables. The basic idea is that for each missing value its ’predictive mean’

(Little 1988, 291) based on regression (e.g., OLS) is compared with the predictive means

of all observed values, and the predictive mean among the observed values with minimum

distance serves as donor record, and its actually observed values are imputed.
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The PMM algorithm for any specific variable Zr (with r ¼ 1,: : :,p) of Z is as follows:

First, as with RHD, relevant X variables are selected using a stepwise selection based on

OLS regression of Zr on X. In contrast to RHD, all X variables can remain on their original

scale level, that is, metric variables are not categorised (Meinfelder and Schnapp 2015).

By means of the regression equation, which includes the stepwise-selected X variables, the

predictive mean is then calculated for each observation in the recipient and the donor file.

In case p . 1; the search for corresponding donor observations is performed using the

Mahalanobis distance function as proposed by Little (1988):

Di;j ¼ ẑi 2 ẑj

� �T
S21

Zr jX
ẑi 2 ẑj

� �

with i ¼ 1; : : :; nrec and j ¼ 1; : : :; ndon; where ẑi corresponds to the predictive mean of

the i-th observation from the recipient file and ẑj corresponds to the predictive mean of the

j-th observation from the donor file. S21
Zr jX

denotes the p £ p-dimensional inverse variance-

covariance matrix of the residuals from the regression of Zr on the stepwise selection

subset of X, by which the distance is weighted.

3.3. Conceptual Differences of the two Algorithms

Traditional co-variate-based nearest neighbour methods like Random Hot Deck assign per

default equal weights to all X variables, without taking into account the explanatory power

or any other definition of relevance regarding the specific variables. Note that there exist

weighted variants of hot deck imputation methods, where (sampling) weights can be

assigned to specific observation units (see e.g., Andridge and Little 2009, 2010). However,

we refer to the weighting of certain X variables used for imputation and we are not aware

of any theory-driven weighting approach for RHD. Sometimes, as is the case with the

considered implementation of the RHD algorithm, a regression-based stepwise selection

of relevant X variables precedes the distance computation. While the X variables selected

via the stepwise algorithm might be adequate predictors for the Y and Z variables to be

matched, their explanatory power is unlikely to be equally high. Technically, any variable

selection to identify ’suitable’ X variables equates a weighting process, where weights for

X variables are either 0 or 1. Although covariate-based methods like Random Hot Deck are

widely used, the issue of unequal explanatory power of the common X variables results in

an optimization problem for identifying the ’best’ matches.

PMM, on the other hand, uses an underlying (generalized) linear model, where the

contribution of any covariate of X is mapped to the explanatory contribution with respect

to Z. The extension by Little (1988) offers also a solution for multivariate Z, as predictive

mean matches are weighted with the Mahalanobis covariance matrix of the residuals from

the regressions of Z1 to Zp on X. The rationale behind is that the distance between a

recipient and a donor predictive mean of a particular variable Zr is less penalized if the

explanatory power of the regression model for Zr is low (and, vice versa, the better the

model fit, the more the distance is penalized), and we get a weighted sum of squares for the

p distances between the predictive mean vectors.

Therefore, the main difference of PMM compared to RHD is in the distance processing:

The possibility of unequal explanatory power among the X variables is ignored by RHD.
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PMM takes potential unequal explanatory power of the selected X variables into account in

a mathematically concise way.

This may indicate a more sophisticated distance processing in favour of PMM and,

consequently, we expect PMM to result in a better fusion performance than the RHD

method, especially with respect to preserving joint distributions. The upcoming simulation

study is designed to provide a differentiated and detailed scrutiny of this underlying

hypothesis.

3.4. Extension to Multiple Imputation

NSIs predominantly use descriptive analyses. While we therefore focus on single

imputation in the simulation study, it is still possible to extend RHD and PMM to Multiple

Imputation (MI) (Rubin 1978, 1987). MI is a popular method for dealing with missing data

in general if the analysis objective is of an inferential nature. The basic idea is to replace

any missing value several times. This is necessary, because the problem of any single

imputation approach without variance correction is that no distinction is made in the

analysis phase between observed and imputed values. MI uses a Bayesian framework,

where missing values are replaced by M . 1 draws from a posterior predictive distribution

of the missing data given the observed data. In a simplified data situation with complete

variable(s) X and partially observed variable(s) Y this yields

pðYmisjX; YobsÞ ¼

Z
p ujX; Yobs

� �
pðYmisjX; Yobs; uÞdu; ð1Þ

where Ymis and Yobs denote the missing and observed part of Y and u denotes the

parameters of the data generating model (Rubin 1987, 160). Technically, we have to

consider the joint distribution of the data and the missingness (e.g., represented by an

indicator variable R), but it can be shown that assuming Missing at Random and

Distinctness we can ignore the model for the missingness (see e.g., Little and Rubin 2020).

One problem in MI is that direct random draws from Equation (1) are usually not feasible

and we have to draw from the observed-data posterior distribution pðujX; YobsÞ followed by

drawing from the predictive distribution of the missing data pðYmisjX; Yobs; uÞ conditioned on

the observed-data posterior instead. The additional variance component comes into play by

creating M . 1 draws (and, therefore, M data sets) for each missing value which yields M

different estimators û ðmÞ with m ¼ 1; : : :;M:Aside from the regular sampling variance of the

estimator, which is calculated for all M data sets and averaged to get W ¼ 1
M

PM
m¼1V̂ û ðmÞ

� �
we

have the additional variance component of the M different estimators B ¼
1

M21

PM
m¼1 û ðmÞ 2 ûMI
� �2

where ûMI as the so-called MI estimator is the average over all M

different estimators. This variance reflects the uncertainty due to missingness. Rubin’s rules

combine the two variance components to the total MI variance T ¼ W þ ð1 þ M �1ÞB:

Several publications discuss approaches, where semi- and non-parametric procedures

approximate draws from the observed-data posterior and the conditional predictive

distribution to emulate proper MI (see e.g., Burgette and Reiter 2010).

For RHD as a non-parametric method the Approximate Bayesian Bootstrap approach by

Rubin and Schenker (1986), which was refined by Kim (2002) and Parzen et al. (2005),

could be used to generate multiple imputations.
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For the MI extension of PMM we can either use a parametric posterior step (Van Buuren

2018) or replace it by Bayesian Bootstrapping (see Koller-Meinfelder 2009), whereas the

conditional predictive draw for the imputation is replaced by the predictive mean matching

step, which is non-stochastic, but mimics random draws from a distribution quite well due

to the deviations of the matched donors from the model. Zhou (2014) has also used

Bayesian Bootstrapping to account for complex survey designs, which is why we think

that incorporating information on varying inclusion probabilities could be conducted

within the posterior step. Alternatively, multilevel models can be used to incorporate

complex survey designs (Quartagno et al. 2020).

Note that for descriptive analysis a single imputation using û in combination with

drawing from p(YmisjX, Yobs, u ¼ û) is usually more efficient than additionally drawing

from pðujYobs;XÞ: If the imputation model is a linear model, and u ¼ ½b;s2� this

procedure is known as stochastic regression imputation (see e.g., Little and Rubin 2020).

Analogously, we use the OLS estimators for PMM throughout our work, rather than

posterior draws from the Bayesian linear model.

4. Simulation Design

Since the motivation for the present analysis is derived from the findings published by

Eurostat (Webber and Tonkin 2013; Serafino and Tonkin 2017; Lamarche 2018), our aim

for the data basis of the simulation study is to stay as close as possible to the relevant

official statistics data sources.

With respect to the analysis objective of our comparison between RHD and PMM, we

deviate from the focus of the previous studies, where emphasis was mainly put on

preserving marginal distributions of the donor study within the fused data source. Instead,

we concentrate on bivariate associations between common variables X and fused variables

Z as well as on the primary objective of any data fusion, the joint distribution of the not

jointly observed variables Y and Z. As stated above, we expect PMM to preserve the

correlations between the variables Y and Z as well as between X and Z better than RHD,

since correlations suffer more from non-exact matches than marginal distributions.

Therefore, our simulation study focuses on evaluating the performance of both algorithms

with respect to associations among different variables.

4.1. Database

We conduct a Monte Carlo (MC) study based on Scientific Use Files (SUFs) of EU-SILC

from 2015, as Eurostat and the NSIs also focus on matching of the EU-SILC and HBS data

files from 2015. In order to ensure a sufficiently large surrogate population, we combine

EU-SILC data for Germany (NDE ¼ 12,861) and France ðNFR ¼ 11; 384Þ: This leads to a

total number of N ¼ 24,245 observations from which we draw k ¼ 1,000 random samples

that we subsequently split into two data files which serve as substitutes for EU-SILC as

recipient and HBS as donor file. For our simulation purposes, all data are based on EU-

SILC due to the necessity of knowing the ’true’ joint distribution of the simulated Y and Z

variables and their correlations.

It would also be possible to draw the data from random distributions such as the normal

distribution. However, it is important to ensure that the data-generating process is not
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based on distribution families, such as multivariate normal distribution, as this would

jeopardise a fair assessment of the respective data fusion algorithms. For example,

Random Hot Deck and Predictive Mean Matching might benefit differently from assumed

distributions. Since PMM is a semi-parametric approach and thus partially subject to

distributional assumptions, generating data from a multivariate normal distribution might

imply an advantage in favour of PMM compared to the non-parametric RHD algorithm. In

this respect, a simulation based on empirical data seems more appropriate.

From the underlying data base, EU-SILC SUFs from 2015, we choose seven X variables

as common variables. In order to stay as close as possible to the intended data fusion of

Eurostat and the NSIs, the chosen variables represent those common variables Eurostat

had selected for their analyses (Leulescu and Agafitei 2013; Lamarche 2018). Table 1

shows an overview of the p ¼ 7 variables X1; : : :;X7 used in the upcoming simulation

study as well as the respective value range and measurement level. It can be seen that for

RHD we have to categorise all variables, whereas for PMM the variables age (X2) and

income (X7) keep their original metric scale level.

The variable activity status (X1) contains information about the types of employment

(self-employed or non-self-employed, pensioner, unemployed, etc.) (Eurostat 2016, 285).

Details concerning the generation and recoding of this variable can be found in the online

supplemental material. The population density level (X3) indicates the population density

of the current residential area. Dwelling type (Eurostat 2016, 173) reflects the type of

accommodation (residential building, flat, etc.) (Eurostat 2016, 173). As both variables,

population density level (X3) and dwelling type (X4), are empty for the German EU-SILC

SUF (probably due to confidentiality reasons), we imputed the values using mice (Van

Buuren 2021) via single imputation. The tenure status (X5) combines information about

the ownership status of the housing unit (sole owner, tenant, etc.) and on the (classified)

rental costs incurred in case of a rental contract (Eurostat 2016, 174, 181). The binary

variable main source of income (X6) distinguishes between (1) income from self-

employment or non-self-employment, property, ownership and assets and (2) income from

pensions, social benefits and other transfers (Eurostat 2013, 20, 27–28; Eurostat 2016, 7,

313–316, 322–336). Its generation and recoding is documented in the online

Table 1. Overview of the Common X Variables.

Common X variables Range / Measurement level

RHD PMM

X1: Activity status of RPa 1 to 5 / categorical 1 to 5 / categorical
X2: Age of RPa 1 to 8 / categorical acc. X2 / metric
X3: Population density level 1 to 3 / categorical 1 to 3 / categorical
X4: Dwelling typeb 1 to 4 / categorical 1 to 4 / categorical
X5: Tenure status 1 to 5 / categorical 1 to 5 / categorical
X6: Main source of incomec 1 to 2 / categorical 1 to 2 / categorical
X7: Income 1 to 5 / categorical acc. X7 / metric
a RP: ’Reference person’ (interviewed person of the household);
b Actual range 1 to 5, category 5 is empty.
c Here, the missing values also form a category (coded as 9);

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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supplemental material. Income reflects the ’total disposable household income’ (Eurostat

2016, 209) and, for RHD, is recoded into five income quintiles.

For the specific variables Y and Z, which represent the income variables of EU-SILC (Y)

and the consumption variables of HBS (Z) that are actually not jointly observed, we select

psilc ¼ Phbs ¼ 2 substitutes each, that is, Y ¼ ðY1; Y2Þ and Z ¼ ðZ1; Z2Þ; from the database.

This underlines the possibility that the univariate data fusion (imputing only one HBS

variable) can also be performed in a multivariate setting with more than one specific HBS

characteristic. It becomes obvious that an exact coverage of the specific variables Y and Z

is only possible for the income variables from EU-SILC, because the database itself

consists of EU-SILC. However, since both, statistical and methodological conclusions, are

of interest, it is more important to ensure the same measurement level for the respective

income and expenditure substitutes and, therefore, it is essential to select metric variables.

For Y1 we choose the variable ‘total disposable household income before social transfers

including old-age and survivor’s benefits’ (Eurostat 2016, 209) and for Y2 the variable

’interest, dividends, profit from capital investments in unincorporated business’ (Eurostat

2016, 214). The variables ‘total household gross income’ (Eurostat 2016, 207) and ’total

disposable household income before social transfers other than old-age and survivor’s

benefits’ (Eurostat 2016, 209) are selected for Z1 and Z2. Table 2 displays an overview of

the specific Y and Z variables used for the simulation study and the corresponding

measurement level.

Note that the variables X7, Y1, Z1 and Z2 are different household income variables, while

Y2 reflects capital gains. For information on the specific income concepts, see Eurostat

(2016, 207–211, 214–215). The high proportion of income variables is due to the data

situation that is based on EU-SILC only (where no consumption information is available –

which is the reason for the intended data fusion of EU-SILC and HBS). However, in a real

data fusion scenario, we do not know the joint distribution for Y and Z. Therefore, we base

our simulation study on EU-SILC only and select different metric variables as proxies for

income (Y) and consumption (Z) to evaluate the joint distribution of Y and Z. However,

many metric variables in the EU-SILC SUFs have a high proportion of missing values, are

completely blank or contain an excessive proportion of zeros. Hence, the selected Y and Z

variables consist of those metric characteristics where information losses due to a high

number of missing values or many zeros are as small as possible.

Table 2. Overview of the Specific Substitute Variables for EU-SILC (Y) and HBS (Z).

Specific EU-SILC substitute variables (Y) Measurement level

Y1: Total disposable household income before social transfers
including old-age and survivor’s benefits

metric

Y2: Interest, dividends, profit from capital investments in
unincorporated business

metric

Specific HBS substitute variables (Z) Measurement level

Z1: Total household gross income metric
Z2: Total disposable household income before social transfers

other than old-age and survivor’s benefits
metric

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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4.2. Monte Carlo Study

Our MC study is structured as follows: First, we draw k ¼ 1,000 random samples without

replacement (Jackknife) from the data specified above. Subsequently, for each random

draw we generate the specific missing data pattern underlying data fusion scenarios (see

Figure 1) and impute the missing Z1 and Z2 values in the k ¼ 1,000 simulated data files via

RHD on the one hand and PMM on the other hand.

More specifically, each random draw leads to a simulated data file that represents EU-

SILC with the observed variables X ¼ (X1,X2,X3,X4, X5,X6,X7) and Y ¼ (Y1, Y2) without

information on the Z variables as well as to a simulated data file that represents HBS with

the observed variables X ¼ (X1, X2, X3, X4, X5, X6, X7) and Z ¼ (Z1, Z2) that in turn

contains no information about the Y variables. ’Stacking’ both data sources results in the

specific missing data pattern displayed in Figure 1. We impute the missing Z1 and Z2

values in the simulated EU-SILC data file using the two proposed data fusion algorithms,

RHD and PMM. Thus, the imputed Z values in the matched data file reflect an artificial

distribution ~Z ¼ ( ~Z1, ~Z2). After the imputation step the correlations between Y and ~Z as well

as between the metric X variables (X2: age and X7: income) and ~Z are then calculated and

compared to the true correlations known from the surrogate population with N ¼ 24,245

individuals as described in Subsection 4.1. As an additional diagnostic besides

correlations, we provide specific conditional means of ~Z given Y in the Appendix.

Note that in empirical data fusion situations we can typically only compare f ð ~ZjXÞ and

f ðX; ~ZÞ from the fused recipient study with f ðZjXÞ and f ðX; ZÞ; respectively, from the donor

study, although this only makes sense if both data sources are random samples from the same

population. Meinfelder (2013) proposes a scatter plot consisting of correlations rX ~Z from the

fused data file and pxz from the donor study, and the R2 from a fitted linear regression could

serve as a quality measure in this context. The artificially created distribution f ðY; ~ZÞ;

however, is subject to the CIA. Kiesl and Rässler (2006) show that the Frechet-Hoeffding

bounds specify a theoretical lower and upper limit for the true marginal joint cdf of any pair of

variables ðYi; ZjÞ:Only the introduction of auxiliary information can help to narrow down the

range for associations between Y and Z (see e.g., Fosdick et al. 2016).

As mentioned in Subsection 3.4 we apply single imputation to reflect those analyses

which we presume NSIs to mostly carry out with the matched data base, resulting in point

estimates for the correlations. This process, from sampling to imputation to the

computation of correlations is performed with k ¼ 1,000 simulation draws.

In order to get a rough understanding of how sensitive the performance of RHD and PMM

could be with regard to the sample sizes of the recipient data file (nsilc) and the donor data file

(nhbs), we vary the sample size n. Of particular interest is the extent to which an excessive

number of donors ðnsilc ! nhbsÞ compared to an equal recipient and donor ratio (nsilc ¼ nhbs)

has an effect on the performance of both data fusion algorithms. Therefore, the MC simulation

is performed twice using different sample sizes n1 and n2. For both simulation scenarios we

consider n1silc
¼ n2silc

¼ 400 observations for EU-SILC. In the first simulation scenario we

also assign n1hbs
¼ 400 units to the HBS. However, in the second scenario we choose a

significantly higher number of donor observations, namely n2hbs
¼ 3; 600 for the HBS data.

This leads to a sample size of n1 ¼ 800 with n1silc
¼ n1hbs

¼ 400 for the first scenario as well as

to a sample size of n2 ¼ 4; 000 with n2silc
¼ 400 and n2hbs

¼ 3; 600 for the second scenario.
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The MC simulation is conducted using R (R Core Team 2021), and we use packages

StatMatch (D’Orazio 2020) and BaBooN (Meinfelder and Schnapp 2015) for RHD and

PMM, respectively.

5. Results

Since we start out with complete samples, where parts of the data are removed to mimic a

data fusion scenario, we know the true parameter values even for those parameters

pertaining to f(Y, Z), but the fusion algorithms implicitly rely on the CIA, and the

theoretically correct values under this assumption are displayed as additional benchmarks

in the results. Note, however, that while data fusion requires assumptions regarding the

joint distribution of Y and Z, the identification problem and the natural uncertainty arising

from it are not the primary focus of our work, but has been covered by many other authors

(see e.g., Kamakura and Wedel 1997; D’Orazio et al. 2006b; Kiesl and Rässler 2006; Conti

et al. 2012; Fosdick et al. 2016; Endres et al. 2019).

5.1. Correlations Between Y And ~Z

As stated in Subsection 3.3, we expect PMM to outperform RHD for bivariate

associations. Hence, PMM should be able to reproduce the unobserved correlations

between Y and Z more accurately than RHD. Table 3 displays the correlations between the

specific variables Y ¼ (Y1, Y2) and Z ¼ (Z1, Z2), resulting from the artificial population

consisting of N ¼ 24, 245 observations. These population correlations are used as true

parameters for graphical diagnostics throughout this section and for Bias and MSE. The

correlations between Y1 and Z1 as well as the correlations between Y1 and Z2 (0.87 and

0.85) are relatively high, whereas for Y2 and Z1 as well as for Y2 and Z2 we observe

moderate correlations (0.44 and 0.48).

Figure 2 displays the MC distributions of the estimated correlations over all k ¼ 1, 000

MC simulation draws with equal number of recipients and donors (nsilc ¼ nhbs ¼ 400). For

high original correlations of 0.87 and 0.85, we find convincing evidence that PMM is able

to reproduce the true parameter values more accurately than RHD. While RHD never

covers the immediate area around the true correlations of 0.87 and 0.85 – the respective

maximum for RHD amounts to 0.79 for dcorrcorr ðY1; ~Z1Þ and 0.71 for dcorrcorr ðY1; ~Z2Þ – the

distributions of the estimated correlations resulting from PMM for dcorrcorr ðY1; ~Z1Þ and

dcorrcorr ðY1; ~Z2Þ are considerably close to the original parameter values. This also becomes

clear by looking at the respective means: PMM produces mean correlations for

dcorrcorr ðY1; ~Z1Þ of 0.83 and for dcorrcorr ðY1; ~Z2Þ of 0.78 and thus comes on average very close to

the original values of 0.87 and 0.85, respectively. RHD generates mean correlations of

0.57 for dcorrcorr ðY1; ~Z1Þ and 0.54 for dcorrcorr ðY1; ~Z2Þ that deviate more strongly from the

Table 3. True Parameters for rYZ

Corr (Y1, Z1) Corr (Y1, Z2) Corr (Y2, Z1) Corr (Y2, Z2)

0.8678 0.8536 0.4361 0.4831

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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observed original parameter values. Furthermore, PMM reproduces the correlation

between Y1 and Z1 more accurately than the respective relationship between Y1 and Z2. For

moderate original correlations between Y and Z of 0.44 and 0.48 it can be seen that the

superior performance in favour of PMM is slightly lower but still present. The MC

distributions over all k ¼ 1,000 simulation draws illustrated in Figure 2 show for

dcorrcorr ðY2; ~Z1Þ and dcorrcorr ðY2; ~Z2Þ that the estimated PMM correlations cover the area around

the true parameters more frequently while RHD tends to underestimate them.

Consequently, the mean of the estimated correlations for dcorrcorr ðY2; ~Z1Þ and dcorrcorr ðY2; ~Z2Þ

resulting from RHD are negatively biased with 0.20 and 0.21, respectively, while PMM

produces almost unbiased estimators with MC mean correlations of 0.39 and 0.40.

The second scenario of the MC study contains an excessive number of donors in order to

investigate mitigating effects on the results, if the proposed matching methods can choose

from a larger donor pool, that is, the overall sample size n2 ¼ 4,000 consists of

nhbs ¼ 3,600 donors versus nsilc ¼ 400 recipients. In general, no substantial change can be

observed for the RHD results as we can see in the respective MC distributions illustrated in

Figure 3. The correlations resulting from PMM with n2 indicate, compared to the PMM

correlations with n1 in the first scenario, in terms of dcorrcorr ðY1; ~Z1Þ and dcorrcorr ðY1; ~Z2Þ slightly

improved results, since the bulk of MC distribution of the PMM correlations is even closer
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Fig. 2. Boxplots – MC distributions for r̂Y ~Z with n1.

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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to the true values of 0.87 and 0.85. Accordingly, the mean correlations computed with

PMM under n2 increase marginally to 0.84 for dcorrcorr ðY1; ~Z1Þ and 0.80 for dcorrcorr ðY1; ~Z2Þ: In

contrast, with respect to dcorrcorr ðY2; ~Z1Þ and dcorrcorr ðY2; ~Z2Þ a slightly smaller number of the

k ¼ 1; 000 PMM correlation estimates covers the area around the moderate true

correlations of 0.44 and 0.48, while again the mean values marginally increase to 0.41 and

0.43 due to a higher outlier rate towards 1 that goes along with a somewhat higher

variance. However, it should be noted that only small changes between n1 and n2 can be

observed that should be treated with caution due to random fluctuations.

In addition to the true correlations of Y and Z, we marked the respective correlations

under CIA in Figures 2 and 3, that is, the theoretical correlations of Y and Z, assuming

independence if conditioned on X. This scenario underpins the relative advantage of PMM

over RHD, as the PMM correlations are close to the correct values, whereas RHD fails to

accurately reproduce the correlation structure of Y and Z, even though correlations under

CIA are in this case close to the true correlations.

Consequently, the PMM correlation estimates have a smaller bias compared to the RHD

estimates, as displayed in Table 4. While PMM yielded more outlier results within the MC

simulation study, the MSE for PMM is still much lower than RHD’s with respect to all

four correlations of interest over both scenarios (see Table. 5).
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Fig. 3. Boxplots – MC distributions for r̂Y ~Z with n2.

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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5.2. Correlations Between X and ~Z

Apart from the reproduction of the joint information between the variables not jointly

observed, the preservation of the distribution between the common variables X and the

specific variables Z can be regarded as a minimum requirement, as it does not rely on any

identifying assumptions. Table 6 shows the true correlations rXZ resulting from the data

base that represents our artificial population specified in Subsection 4.1. For X we consider

the metric variables X2 and X7. Here, correlations between X2 and Z1 as well as between X2

and Z2 are relatively low with 2 0.11 and 2 0.02, respectively, while correlations for X7

and Z1 as well as for X7 and Z2 are rather high with 0.97 each.

As can be seen in the respective MC distributions displayed in Figure 4, both methods

struggle with preserving the low correlations between X2 and both specific variables. One

possible explanation is that variable X2 was not included in the backward-deletion selected

matching model, as variable X7 explains variables Z1 and Z2 almost perfectly, thus

accidentally creating an uncongeniality issue (Meng 1994). For the scenario with

excessive donors this phenomenon vanishes which can be seen in Figure 5, because the

larger sample size increased the probability of X2 to remain in the underlying model.

As expected, PMM does once again much better in preserving high correlations, as the

respective correlation estimates for dcorrcorr ðX7; ~Z1Þ and dcorrcorr ðX7; ~Z2Þ come very close to the

true parameter values and amount on average to 0.95 under n1 and approximately to the

real parameter value of 0.97 under n2. RHD produces mean correlations of 0.64 (n1) and

0.65 (n2) for dcorrcorr (X7, ~Z1) as well as 0.65 (n1) and 0.64 (n2) for dcorrcorr (X7, ~Z2), respectively,

that fall far behind the real observed parameter values. Investigating the bias and the MSE

underlines these findings in favour of PMM, as displayed in Tables 7 and 8.

Table 4. Bias of r̂Y ~Z

dcorrcorr (Y1, Z̃1) dcorrcorr (Y1, Z̃2) dcorrcorr (Y2, Z̃1) dcorrcorr (Y2, Z̃2)

n1 RHD 0.2935 0.3139 0.2389 0.2707
PMM 0.0386 0.0710 0.0450 0.0801

n2 RHD 0.2950 0.3260 0.2435 0.2652
PMM 0.0233 0.0554 0.0283 0.0520

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).

Table 6. True Parameters for rXZ

corr (X2, Z1) corr (X2, Z2) corr (X7, Z1) corr (X7, Z2)

–0.1081 –0.0208 0.9699 0.9737

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).

Table 5. MSE of r̂Y ~Z

dcorrcorr (Y1, Z̃1) dcorrcorr (Y1, Z̃2) dcorrcorr (Y2, Z̃1) dcorrcorr (Y2, Z̃2)

n1 RHD 0.0964 0.1070 0.0623 0.0785
PMM 0.0044 0.0094 0.0123 0.0158

n2 RHD 0.0963 0.1139 0.0647 0.0760
PMM 0.0040 0.0073 0.0141 0.0153

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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5.3. Discussion

Simulation studies can never claim general validity, but throughout the simulation study

PMM emerged as superior method for the investigated quantities of interest, and there are

several potential explanations for these findings.

The already mentioned benefit of PMM is the implicit weighting of the common X

variables with respect to the specific Z variables. Since exact matches are rare in purely

discrete settings and impossible in continuous settings, distances between recipients and

potential donors play a crucial role. And some X variables usually turn out to be more

relevant for the distance processing in order to find the ’nearest’ donor observation and,

therefore, we have to account for the unequal explanatory power of the common X

variables with regard to the specific Z variables to be matched. Classical covariate-based

methods do not provide a straightforward procedure to decide which variables should be

included, but, using all potential common variables can lead to very inefficient matches.

For continuous X variables a perfect match is impossible which means that for the RHD

method these variables have to be categorised which reduces information. An increasing

number of variables and an increasing number of categories per variable means that the

number of potential donors can become scarce or zero for some cell combinations and

merging of categories is required for RHD which obviously additionally deprives the X
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Table 7. Bias of r̂X Z̃

dcorrcorr (X2, Z̃1) dcorrcorr (X2, Z̃2) dcorrcorr (X7, Z̃1) dcorrcorr (X7, Z̃2)

n1 RHD 0.0155 0.0449 0.3270 0.3264
PMM 0.0240 0.0235 0.0236 0.0286

n2 RHD 0.0145 0.0129 0.3299 0.3368
PMM 0.0095 0.0059 0.0027 0.0043

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).

Table 8. MSE of r̂Y Z̃

dcorrcorr (X2, Z̃1) dcorrcorr (X2, Z̃2) dcorrcorr (X7, Z̃1) dcorrcorr (X7, Z̃2)

n1 RHD 0.0032 0.0046 0.1203 0.1192
PMM 0.0028 0.0027 0.0033 0.0055

n2 RHD 0.0026 0.0022 0.1206 0.1255
PMM 0.0022 0.0020 0.0005 0.0007

Source: EU-SILC SUF DE (2015); EU-SILC SUF FR (2015).
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variables of some explanatory power. Generally speaking, when the probability for exact

matches decreases due to a high number of common variables or a smaller donor pool, the

way we are dealing with non-exact matches becomes more relevant.

PMM automatically handles this optimization problem which leads to overall better

preservation of correlations between Y and Z, as matching on ’noise’ is reduced. The usage

of regression models means that PMM does not require any categorisation of X variables,

but donor scarcity can still be an issue for PMM as well: The lower the number of potential

donors, the higher, on average, the distances between recipients and matched donors

(Andridge and Little 2010). This effect can also be observed for skewed variables (Kleinke

2017), where the long tail means that scarce donors are used more often which can also

lead to biased results, although the potential for this problem is less severe in the large-

scale studies in official statistics. Findings from Landerman et al. (1997) suggest that

PMM remains an adequate imputation method even for income as a typically skewed

variable that has been subject to our analyses as well. If, however, zero-distances are

possible for all cell combinations, all nearest neighbour matching techniques are

equivalent and, thus, RHD becomes a special case of PMM (see Little 1988, 291).

In order to investigate the aforementioned categorisation effects, we conducted

additional simulations using a refined categorisation of both metric X variables for RHD

with 14 age classes and 20 income classes. The results illustrated in the online

supplemental material indicate an improvement of RHD, while PMM still outperforms

RHD both for n1 and n2 significantly. Findings from additional simulations using Gower

distances (without categorisation) suggest that PMM is still superior to covariate-based

matching, although the gap becomes closer for the excessive donor scenario.

As stated in Section 3 in order to keep our research close to applied problems, we

additionally included a variable selection scheme via backward-deletion for both

algorithms to reduce the potentially high number of common variables to a more sensible

subset of matching covariates. However, this does not invalidate the general perspective

on the differences between PMM and RHD.

6. Conclusion

One objective of our research was to compare two types of data fusion methods, Random

Hot Deck as a representative of ’classical’ nearest neighbour hot deck methods, and

Predictive Mean Matching as alternative. Covariate-based variants like RHD are wide-

spread for data fusion in practice, whereas Predictive Mean Matching is a popular method

for conditional univariate sequential regression imputation algorithms (Van Buuren and

Groothuis-Oudshoorn 2011), but is far less common as a data fusion method. In general,

PMM requires an underlying parametric model for predicting the (conditional) means of

missing and observed cases, which distinguishes it from the purely covariate-based

statistical matching methods. This can be perceived as a drawback, as the ’non-parametric’

covariate-based methods do not require this step. However, we still make implicit

assumptions for covariate-based algorithms about the association between the common

and the specific variables by deciding to use a particular distance metric. Since our goal is

the joint analysis of these variables, we assume a particular data generating process

(including identifying assumptions), and we implicitly assume the imputation method to
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be congenial to the analysis model, that is, associations among variables which are part of

the analysis have to be accounted for by the imputation model as well (for details see Meng

1994; Xie and Meng 2017). To some extent this drawback therefore can be viewed as

advantageous, as PMM requires us to think about the nature of the relationship between

the common X variables and the specific Z variables to be fused.

We did not consider constrained matching (see e.g., Rodgers 1984; Rubin 1986) in this

article which typically aims at a balanced usage of donors. We feel, however, that taking

this approach to the extreme ’forces’ the marginal distribution of Z from the donor study

upon the recipient study, irrespective of different sample properties, indicated by deviating

distributions in X. Under these circumstances it would be plausible that the fused

distribution of ~Z in the recipient study should be different to the corresponding distribution

in the donor study.

Besides, the primary objective of any data fusion is the preservation of the joint

distribution of Y and Z (Kiesl and Rässler 2005) which might clash with the objective of

preserving the marginal distribution of Z at all costs if the studies are not random samples

from the same population. In our simulation studies PMM outperformed the covariate-

based RHD method with respect to preserving f(Y, Z). A secondary objective of our

research was to point out that covariate-based nearest neighbour matching should not

automatically be considered as the default method for data fusion in practice. While

Predictive Mean Matching can only be applied to metric-scale Z variables, we believe we

have demonstrated that the method is a very useful addition to the toolbox of data fusion

methods and, thus, should be taken into consideration for general application.

As stated previously, once data fusion is established as a particular missing data pattern

with a particular analysis objective, we can leave the perspective of an artificially matched

data set via ’statistical twins’, and consider any sophisticated missing data method.
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