Show simple item record

[journal article]

dc.contributor.authorMeinfelder, Floriande
dc.contributor.authorSchaller, Jannikde
dc.date.accessioned2024-02-06T12:55:28Z
dc.date.available2024-02-06T12:55:28Z
dc.date.issued2022de
dc.identifier.issn2001-7367de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/91946
dc.description.abstractData fusion describes the method of combining data from (at least) two initially independent data sources to allow for joint analysis of variables which are not jointly observed. The fundamental idea is to base inference on identifying assumptions, and on common variables which provide information that is jointly observed in all the data sources. A popular class of methods dealing with this particular missing-data problem in practice is based on covariate-based nearest neighbour matching, whereas more flexible semi- or even fully parametric approaches seem underrepresented in applied data fusion. In this article we compare two different approaches of nearest neighbour hot deck matching: One, Random Hot Deck, is a variant of the covariate-based matching methods which was proposed by Eurostat, and can be considered as a 'classical' statistical matching method, whereas the alternative approach is based on Predictive Mean Matching. We discuss results from a simulation study where we deviate from previous analyses of marginal distributions and consider joint distributions of fusion variables instead, and our findings suggest that Predictive Mean Matching tends to outperform Random Hot Deck.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherstatistical matching; missing data; predictive mean matching; nearest neighbour Imputation; missing-by-design pattern; EU-SILC 2015de
dc.titleData Fusion for Joining Income and Consumtion Information using Different Donor-Recipient Distance Metricsde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalJournal of Official Statistics
dc.source.volume38de
dc.publisher.countryDEUde
dc.source.issue2de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.classozForschungsarten der Sozialforschungde
dc.subject.classozResearch Designen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozMittelwertde
dc.subject.thesozmeanen
dc.subject.thesozStatistikde
dc.subject.thesozstatisticsen
dc.subject.thesozEinkommensverteilungde
dc.subject.thesozincome distributionen
dc.subject.thesozVerbraucherde
dc.subject.thesozconsumeren
dc.subject.thesozSimulationde
dc.subject.thesozsimulationen
dc.identifier.urnurn:nbn:de:0168-ssoar-91946-6
dc.rights.licenceCreative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0de
dc.rights.licenceCreative Commons - Attribution-Noncommercial-No Derivative Works 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10034708
internal.identifier.thesoz10052524
internal.identifier.thesoz10035432
internal.identifier.thesoz10041667
internal.identifier.thesoz10048454
internal.identifier.thesoz10037865
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo509-532de
internal.identifier.classoz10105
internal.identifier.classoz10104
internal.identifier.journal201
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.2478/jos-2022-0024de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence20
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record