SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(265.6Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71235-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Procesamiento de bases de datos escolares por medio de redes neuronales artificiales

School database processing from the perspective of artificial neural networks
[journal article]

García, Brenda Miranda
González Bárcenas, Víctor Manuel
Reyes Nava, Adriana
Alejo Eleuterio, Roberto
Rendón Lara, Eréndira

Abstract

El estudio de bases de datos escolares es un área que ha sido poco estudiada y cuestionada desde el punto de vista de la minería de datos o de la inteligencia artificial. Actualmente, existen algunos trabajos que muestran su procesamiento mediante algoritmos de aprendizaje automático o "inteligentes... view more

El estudio de bases de datos escolares es un área que ha sido poco estudiada y cuestionada desde el punto de vista de la minería de datos o de la inteligencia artificial. Actualmente, existen algunos trabajos que muestran su procesamiento mediante algoritmos de aprendizaje automático o "inteligentes"; sin embargo, no se detienen en analizar la pertinencia de procesar datos cualitativos como si fueran cuantitativos. En este artículo se estudia este problema con el uso de tres modelos de red neuronal. Los resultados evidencian la capacidad de estos modelos para clasificar con un porcentaje de acierto superior a 95% las tendencias en los estudiantes utilizando principalmente datos cualitativos.... view less


The analysis of school mentoring databases is a poorly studied area and it is usually questioned from the point of view of data mining or artificial intelligence. Nowadays, there are some works about the processing of such a type of databases through machine learning algorithms, as well as the so ca... view more

The analysis of school mentoring databases is a poorly studied area and it is usually questioned from the point of view of data mining or artificial intelligence. Nowadays, there are some works about the processing of such a type of databases through machine learning algorithms, as well as the so called "smart algorithms". However, the relevance of analyzing and processing qualitative data as if they were quantitative remains still interesting. In this research, the problem of analyzing school mentoring databases by means of three artificial neural network models are thoroughly studied. Results shows the ability of these models to classify the correct trends in students’ statistics using mainly qualitative data with a high degree of certainty (more than 95% of accuracy).... view less

Keywords
data bank; artificial intelligence; data; analysis; school; mentoring; neural network

Classification
Macroanalysis of the Education System, Economics of Education, Educational Policy

Free Keywords
qualitative data

Document language
Spanish

Publication Year
2020

Page/Pages
p. 441-449

Journal
CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27 (2020) 3

DOI
https://doi.org/10.30878/ces.v27n3a11

ISSN
2395-8782

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0

With the permission of the rights owner, this publication is under open access due to a (DFG-/German Research Foundation-funded) national or Alliance license.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.