SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(265.6 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71235-4

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Procesamiento de bases de datos escolares por medio de redes neuronales artificiales

School database processing from the perspective of artificial neural networks
[Zeitschriftenartikel]

García, Brenda Miranda
González Bárcenas, Víctor Manuel
Reyes Nava, Adriana
Alejo Eleuterio, Roberto
Rendón Lara, Eréndira

Abstract

El estudio de bases de datos escolares es un área que ha sido poco estudiada y cuestionada desde el punto de vista de la minería de datos o de la inteligencia artificial. Actualmente, existen algunos trabajos que muestran su procesamiento mediante algoritmos de aprendizaje automático o "inteligentes... mehr

El estudio de bases de datos escolares es un área que ha sido poco estudiada y cuestionada desde el punto de vista de la minería de datos o de la inteligencia artificial. Actualmente, existen algunos trabajos que muestran su procesamiento mediante algoritmos de aprendizaje automático o "inteligentes"; sin embargo, no se detienen en analizar la pertinencia de procesar datos cualitativos como si fueran cuantitativos. En este artículo se estudia este problema con el uso de tres modelos de red neuronal. Los resultados evidencian la capacidad de estos modelos para clasificar con un porcentaje de acierto superior a 95% las tendencias en los estudiantes utilizando principalmente datos cualitativos.... weniger


The analysis of school mentoring databases is a poorly studied area and it is usually questioned from the point of view of data mining or artificial intelligence. Nowadays, there are some works about the processing of such a type of databases through machine learning algorithms, as well as the so ca... mehr

The analysis of school mentoring databases is a poorly studied area and it is usually questioned from the point of view of data mining or artificial intelligence. Nowadays, there are some works about the processing of such a type of databases through machine learning algorithms, as well as the so called "smart algorithms". However, the relevance of analyzing and processing qualitative data as if they were quantitative remains still interesting. In this research, the problem of analyzing school mentoring databases by means of three artificial neural network models are thoroughly studied. Results shows the ability of these models to classify the correct trends in students’ statistics using mainly qualitative data with a high degree of certainty (more than 95% of accuracy).... weniger

Thesaurusschlagwörter
künstliche Intelligenz; neuronales Netz; Mentoring; Schule; Datenbank; Analyse; Daten

Klassifikation
Makroebene des Bildungswesens

Freie Schlagwörter
qualitative data

Sprache Dokument
Spanisch

Publikationsjahr
2020

Seitenangabe
S. 441-449

Zeitschriftentitel
CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27 (2020) 3

DOI
https://doi.org/10.30878/ces.v27n3a11

ISSN
2395-8782

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.