SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1515/JOS-2017-0006

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Three Methods for Occupation Coding Based on Statistical Learning

[journal article]

Gweon, Hyukjun
Schonlau, Matthias
Kaczmirek, Lars
Blohm, Michael
Steiner, Stefan

Abstract

Occupation coding, an important task in official statistics, refers to coding a respondent's text answer into one of many hundreds of occupation codes. To date, occupation coding is still at least partially conducted manually, at great expense. We propose three methods for automatic coding: combining... view more

Occupation coding, an important task in official statistics, refers to coding a respondent's text answer into one of many hundreds of occupation codes. To date, occupation coding is still at least partially conducted manually, at great expense. We propose three methods for automatic coding: combining separate models for the detailed occupation codes and for aggregate occupation codes, a hybrid method that combines a duplicate-based approach with a statistical learning algorithm, and a modified nearest neighbor approach. Using data from the German General Social Survey (ALLBUS), we show that the proposed methods improve on both the coding accuracy of the underlying statistical learning algorithm and the coding accuracy of duplicates where duplicates exist. Further, we find defining duplicates based on ngram variables (a concept from text mining) is preferable to one based on exact string matches.... view less

Keywords
official statistics; ALLBUS; occupation; algorithm; method; coding

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Automated coding; Machine learning; ISCO-88

Document language
English

Publication Year
2017

Page/Pages
p. 101-122

Journal
Journal of Official Statistics, 33 (2017) 1

ISSN
2001-7367

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.