SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/mac.9677

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Ideology and Policy Preferences in Synthetic Data: The Potential of LLMs for Public Opinion Analysis

[journal article]

Lee, Keyeun
Park, Jaehyuk
Choi, Suh-hee
Lee, Changkeun

Abstract

This study investigates whether large language models (LLMs) can meaningfully extend or generate synthetic public opinion survey data on labor policy issues in South Korea. Unlike prior work conducted on people's general sociocultural values or specific political topics such as voting intentions, ou... view more

This study investigates whether large language models (LLMs) can meaningfully extend or generate synthetic public opinion survey data on labor policy issues in South Korea. Unlike prior work conducted on people's general sociocultural values or specific political topics such as voting intentions, our research examines policy preferences on tangible social and economic topics, offering deeper insights for news media and data analysts. In two key applications, we first explore whether LLMs can predict public sentiment on emerging or rapidly evolving issues using existing survey data. We then assess how LLMs generate synthetic datasets resembling real-world survey distributions. Our findings reveal that while LLMs capture demographic and ideological traits with reasonable accuracy, they tend to overemphasize ideological orientation for politically charged topics - a bias that is more pronounced in fully synthetic data, raising concerns about perpetuating societal stereotypes. Despite these challenges, LLMs hold promise for enhancing data-driven journalism and policy research, particularly in polarized societies. We call for further study into how LLM-based predictions align with human responses in diverse sociopolitical settings, alongside improved tools and guidelines to mitigate embedded biases.... view less

Keywords
public opinion; artificial intelligence; political attitude; survey research; data processing

Classification
Basic Research, General Concepts and History of the Science of Communication

Free Keywords
AI-generated text; ChatGPT; large language models; news media; policy preferences

Document language
English

Publication Year
2025

Journal
Media and Communication, 13 (2025)

Issue topic
AI, Media, and People: The Changing Landscape of User Experiences and Behaviors

ISSN
2183-2439

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.