Volltext herunterladen
(externe Quelle)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/mac.9677
Export für Ihre Literaturverwaltung
Ideology and Policy Preferences in Synthetic Data: The Potential of LLMs for Public Opinion Analysis
[Zeitschriftenartikel]
Abstract This study investigates whether large language models (LLMs) can meaningfully extend or generate synthetic public opinion survey data on labor policy issues in South Korea. Unlike prior work conducted on people's general sociocultural values or specific political topics such as voting intentions, ou... mehr
This study investigates whether large language models (LLMs) can meaningfully extend or generate synthetic public opinion survey data on labor policy issues in South Korea. Unlike prior work conducted on people's general sociocultural values or specific political topics such as voting intentions, our research examines policy preferences on tangible social and economic topics, offering deeper insights for news media and data analysts. In two key applications, we first explore whether LLMs can predict public sentiment on emerging or rapidly evolving issues using existing survey data. We then assess how LLMs generate synthetic datasets resembling real-world survey distributions. Our findings reveal that while LLMs capture demographic and ideological traits with reasonable accuracy, they tend to overemphasize ideological orientation for politically charged topics - a bias that is more pronounced in fully synthetic data, raising concerns about perpetuating societal stereotypes. Despite these challenges, LLMs hold promise for enhancing data-driven journalism and policy research, particularly in polarized societies. We call for further study into how LLM-based predictions align with human responses in diverse sociopolitical settings, alongside improved tools and guidelines to mitigate embedded biases.... weniger
Thesaurusschlagwörter
öffentliche Meinung; künstliche Intelligenz; politische Einstellung; Umfrageforschung; Datenverarbeitung
Klassifikation
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Kommunikationswissenschaften
Freie Schlagwörter
AI-generated text; ChatGPT; large language models; news media; policy preferences
Sprache Dokument
Englisch
Publikationsjahr
2025
Zeitschriftentitel
Media and Communication, 13 (2025)
Heftthema
AI, Media, and People: The Changing Landscape of User Experiences and Behaviors
ISSN
2183-2439
Status
Veröffentlichungsversion; begutachtet (peer reviewed)