Show simple item record

[journal article]

dc.contributor.authorLee, Keyeunde
dc.contributor.authorPark, Jaehyukde
dc.contributor.authorChoi, Suh-heede
dc.contributor.authorLee, Changkeunde
dc.date.accessioned2025-05-22T09:11:07Z
dc.date.available2025-05-22T09:11:07Z
dc.date.issued2025de
dc.identifier.issn2183-2439de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/102541
dc.description.abstractThis study investigates whether large language models (LLMs) can meaningfully extend or generate synthetic public opinion survey data on labor policy issues in South Korea. Unlike prior work conducted on people's general sociocultural values or specific political topics such as voting intentions, our research examines policy preferences on tangible social and economic topics, offering deeper insights for news media and data analysts. In two key applications, we first explore whether LLMs can predict public sentiment on emerging or rapidly evolving issues using existing survey data. We then assess how LLMs generate synthetic datasets resembling real-world survey distributions. Our findings reveal that while LLMs capture demographic and ideological traits with reasonable accuracy, they tend to overemphasize ideological orientation for politically charged topics - a bias that is more pronounced in fully synthetic data, raising concerns about perpetuating societal stereotypes. Despite these challenges, LLMs hold promise for enhancing data-driven journalism and policy research, particularly in polarized societies. We call for further study into how LLM-based predictions align with human responses in diverse sociopolitical settings, alongside improved tools and guidelines to mitigate embedded biases.de
dc.languageende
dc.subject.ddcPublizistische Medien, Journalismus,Verlagswesende
dc.subject.ddcNews media, journalism, publishingen
dc.subject.otherAI-generated text; ChatGPT; large language models; news media; policy preferencesde
dc.titleIdeology and Policy Preferences in Synthetic Data: The Potential of LLMs for Public Opinion Analysisde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/mediaandcommunication/article/view/9677/4381de
dc.source.journalMedia and Communication
dc.source.volume13de
dc.publisher.countryPRTde
dc.subject.classozAllgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Kommunikationswissenschaftende
dc.subject.classozBasic Research, General Concepts and History of the Science of Communicationen
dc.subject.thesozöffentliche Meinungde
dc.subject.thesozpublic opinionen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozpolitische Einstellungde
dc.subject.thesozpolitical attitudeen
dc.subject.thesozUmfrageforschungde
dc.subject.thesozsurvey researchen
dc.subject.thesozDatenverarbeitungde
dc.subject.thesozdata processingen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10052047
internal.identifier.thesoz10043031
internal.identifier.thesoz10041739
internal.identifier.thesoz10040714
internal.identifier.thesoz10040567
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10801
internal.identifier.journal793
internal.identifier.document32
internal.identifier.ddc070
dc.source.issuetopicAI, Media, and People: The Changing Landscape of User Experiences and Behaviorsde
dc.identifier.doihttps://doi.org/10.17645/mac.9677de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/mediaandcommunication/oai/@@oai:ojs.cogitatiopress.com:article/9677
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record