SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.113-10

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

IoT-Enabled Plant Growth Prediction and Health Monitoring System Using Sensor Fusion and Machine Learning Techniques

[Zeitschriftenartikel]

Dada, Temitope James
Oge, Elekwa
Okhueleigbe, Vincent
Ishiwu, Jude
Onyeyili, Ikemefuna
Clarke, Shokare

Abstract

The major challenges farmers face are predicting plant growth and identifying health problems before it is too late. The manual observations in old methods typically result in resource waste and erroneous predictions, damaging the ecosystem and crop production. Getting a dependable and automated sys... mehr

The major challenges farmers face are predicting plant growth and identifying health problems before it is too late. The manual observations in old methods typically result in resource waste and erroneous predictions, damaging the ecosystem and crop production. Getting a dependable and automated system to mitigate the challenges is now more important than ever.Given this pressing need, this paper proposes a creative solution using environmental and plant-specific sensors to collect real-time data. Then, it will be analysed using simplified machine learning algorithms, specifically Random Forest Classifiers, to precisely forecast plant growth stages and Support Vector Machine (SVM) to detect potential health problems. After testing this on various plant types, the accuracy of growth prediction was approximately 92.5% and 95.2% while detecting the plant's health issues.This system optimises crop yields and reduces resource consumption while minimising environmental impact. Furthermore, the system is flexible and more suitable for diverse farming needs, including smart farming and managing greenhouses. This research enables the farmers to make informed decisions and cultivate a more sustainable future.... weniger

Thesaurusschlagwörter
Landwirtschaft

Klassifikation
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften

Freie Schlagwörter
Agriculture; IoT; Support Vector Machine; Precision Agriculture; Sensor Fusion; Machine Learning

Sprache Dokument
Englisch

Publikationsjahr
2025

Seitenangabe
S. 7001-7006

Zeitschriftentitel
Path of Science, 11 (2025) 1

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.