Show simple item record

[journal article]

dc.contributor.authorDada, Temitope Jamesde
dc.contributor.authorOge, Elekwade
dc.contributor.authorOkhueleigbe, Vincentde
dc.contributor.authorIshiwu, Judede
dc.contributor.authorOnyeyili, Ikemefunade
dc.contributor.authorClarke, Shokarede
dc.date.accessioned2025-02-12T14:11:39Z
dc.date.available2025-02-12T14:11:39Z
dc.date.issued2025de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/99911
dc.description.abstractThe major challenges farmers face are predicting plant growth and identifying health problems before it is too late. The manual observations in old methods typically result in resource waste and erroneous predictions, damaging the ecosystem and crop production. Getting a dependable and automated system to mitigate the challenges is now more important than ever.Given this pressing need, this paper proposes a creative solution using environmental and plant-specific sensors to collect real-time data. Then, it will be analysed using simplified machine learning algorithms, specifically Random Forest Classifiers, to precisely forecast plant growth stages and Support Vector Machine (SVM) to detect potential health problems. After testing this on various plant types, the accuracy of growth prediction was approximately 92.5% and 95.2% while detecting the plant's health issues.This system optimises crop yields and reduces resource consumption while minimising environmental impact. Furthermore, the system is flexible and more suitable for diverse farming needs, including smart farming and managing greenhouses. This research enables the farmers to make informed decisions and cultivate a more sustainable future.de
dc.languageende
dc.subject.ddcNaturwissenschaftende
dc.subject.ddcScienceen
dc.subject.otherAgriculture; IoT; Support Vector Machine; Precision Agriculture; Sensor Fusion; Machine Learningde
dc.titleIoT-Enabled Plant Growth Prediction and Health Monitoring System Using Sensor Fusion and Machine Learning Techniquesde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/view/3408/1642de
dc.source.journalPath of Science
dc.source.volume11de
dc.publisher.countryMISCde
dc.source.issue1de
dc.subject.classozNaturwissenschaften, Technik(wissenschaften), angewandte Wissenschaftende
dc.subject.classozNatural Science and Engineering, Applied Sciencesen
dc.subject.thesozLandwirtschaftde
dc.subject.thesozagricultureen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10034547
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo7001-7006de
internal.identifier.classoz50200
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc500
dc.identifier.doihttps://doi.org/10.22178/pos.113-10de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3408
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record