Show simple item record

[journal article]

dc.contributor.authorOlobo, Neibo Augustinede
dc.contributor.authorAyuba, Waliu Adebayode
dc.contributor.authorObi-Obuoha, Abiamamelade
dc.contributor.authorIyobosa, Izevbigie Hopede
dc.contributor.authorAdebayo, Aderemi Ibraheemde
dc.contributor.authorJude, Ishiwu Ifeanyichukwude
dc.contributor.authorIfechukwu, Chioma Jessicade
dc.date.accessioned2025-01-16T10:51:46Z
dc.date.available2025-01-16T10:51:46Z
dc.date.issued2024de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/99058
dc.description.abstractMachine learning (ML) is revolutionising cybersecurity by enhancing the ability to predict, detect, and respond to cyber threats. By leveraging advanced algorithms, ML systems can analyse vast datasets in real-time, identify patterns, and automate responses, addressing the challenges of increasingly sophisticated cyberattacks. This paper explores the transformative impact of machine learning in cybersecurity, highlighting key tasks such as classification, anomaly detection, and natural language processing. It also discusses future research directions, including explainable AI, adversarial machine learning, federated learning, and privacy-preserving techniques. The cybersecurity community can develop more robust and adaptive defences by focusing on these innovative areas, ensuring a safer digital environment. Integrating machine learning into cybersecurity practices is crucial for navigating the evolving threat landscape and maintaining trust in digital systems.de
dc.languageende
dc.subject.ddcSoziologie, Anthropologiede
dc.subject.ddcSociology & anthropologyen
dc.subject.otherIntelligent Incident Response; Machine Learning; Threat Detection; Automated Response; Predictive Analyticsde
dc.titleIntelligent Incident Response Systems Using Machine Learningde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/view/3418/1627de
dc.source.journalPath of Science
dc.source.volume10de
dc.publisher.countryMISCde
dc.source.issue12de
dc.subject.classozWissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologiede
dc.subject.classozSociology of Science, Sociology of Technology, Research on Science and Technologyen
dc.subject.thesozcomputerunterstütztes Lernende
dc.subject.thesozcomputer aided learningen
dc.subject.thesozBildungde
dc.subject.thesozeducationen
dc.subject.thesozBedrohungde
dc.subject.thesozthreaten
dc.subject.thesozDatenschutzde
dc.subject.thesozdata protectionen
dc.subject.thesozAutomatisierungde
dc.subject.thesozautomationen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10040398
internal.identifier.thesoz10035091
internal.identifier.thesoz10037879
internal.identifier.thesoz10040560
internal.identifier.thesoz10037519
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo5019-5032de
internal.identifier.classoz10220
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc301
dc.identifier.doihttps://doi.org/10.22178/pos.112-13de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3418
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record