SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.112-13

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Intelligent Incident Response Systems Using Machine Learning

[Zeitschriftenartikel]

Olobo, Neibo Augustine
Ayuba, Waliu Adebayo
Obi-Obuoha, Abiamamela
Iyobosa, Izevbigie Hope
Adebayo, Aderemi Ibraheem
Jude, Ishiwu Ifeanyichukwu
Ifechukwu, Chioma Jessica

Abstract

Machine learning (ML) is revolutionising cybersecurity by enhancing the ability to predict, detect, and respond to cyber threats. By leveraging advanced algorithms, ML systems can analyse vast datasets in real-time, identify patterns, and automate responses, addressing the challenges of increasingly... mehr

Machine learning (ML) is revolutionising cybersecurity by enhancing the ability to predict, detect, and respond to cyber threats. By leveraging advanced algorithms, ML systems can analyse vast datasets in real-time, identify patterns, and automate responses, addressing the challenges of increasingly sophisticated cyberattacks. This paper explores the transformative impact of machine learning in cybersecurity, highlighting key tasks such as classification, anomaly detection, and natural language processing. It also discusses future research directions, including explainable AI, adversarial machine learning, federated learning, and privacy-preserving techniques. The cybersecurity community can develop more robust and adaptive defences by focusing on these innovative areas, ensuring a safer digital environment. Integrating machine learning into cybersecurity practices is crucial for navigating the evolving threat landscape and maintaining trust in digital systems.... weniger

Thesaurusschlagwörter
computerunterstütztes Lernen; Bildung; Bedrohung; Datenschutz; Automatisierung

Klassifikation
Wissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologie

Freie Schlagwörter
Intelligent Incident Response; Machine Learning; Threat Detection; Automated Response; Predictive Analytics

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 5019-5032

Zeitschriftentitel
Path of Science, 10 (2024) 12

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.