Show simple item record

[journal article]

dc.contributor.authorOlobo, Neibo Augustinede
dc.contributor.authorAyuba, Waliu Adebayode
dc.contributor.authorOmojola, Ayogoke Felixde
dc.contributor.authorIyobosa, Izevbigie Hopede
dc.contributor.authorAdebayo, Aderemi Ibraheemde
dc.contributor.authorObi-Obuoha, Abiamamelade
dc.contributor.authorAfegbai, Unuigbokhai Peterde
dc.date.accessioned2025-01-16T10:49:24Z
dc.date.available2025-01-16T10:49:24Z
dc.date.issued2024de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/99057
dc.description.abstractThe Internet of Things (IoT) has revolutionised various sectors, including healthcare, education, agriculture, and military applications, by enabling seamless communication and data collection among interconnected devices. However, IoT networks' open and decentralised nature exposes them to many security threats and vulnerabilities. Intrusion Detection Systems (IDS) have been developed to address these challenges by identifying and mitigating malicious activities targeting these networks. Despite their importance, many organisations struggle to detect and prevent novel and sophisticated attacks effectively. This paper presents a comprehensive survey of the security issues inherent in IoT environments, emphasising the role of deep learning and machine learning techniques in enhancing IDS capabilities. By analysing existing vulnerabilities and evaluating various methodologies, we highlight the critical need for robust security measures that ensure IoT systems' reliability, privacy, and integrity. Through our findings, we advocate for integrating advanced analytical techniques in IDS to bolster defences against evolving threats in the IoT landscape.de
dc.languageende
dc.subject.ddcSoziologie, Anthropologiede
dc.subject.ddcSociology & anthropologyen
dc.subject.otherIntrusion Detection System; network security; deep learning; machine learning; malicious attacks; data privacy; security measuresde
dc.titleDeep Learning-Based Intrusion Detection Systems For Network Security in IoT Systemde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/view/3417/1626de
dc.source.journalPath of Science
dc.source.volume10de
dc.publisher.countryMISCde
dc.source.issue12de
dc.subject.classozWissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologiede
dc.subject.classozSociology of Science, Sociology of Technology, Research on Science and Technologyen
dc.subject.thesozBildungde
dc.subject.thesozeducationen
dc.subject.thesozDatensicherheitde
dc.subject.thesozdata securityen
dc.subject.thesozcomputerunterstütztes Lernende
dc.subject.thesozcomputer aided learningen
dc.subject.thesozVulnerabilitätde
dc.subject.thesozvulnerabilityen
dc.subject.thesozInternetde
dc.subject.thesozInterneten
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10035091
internal.identifier.thesoz10057861
internal.identifier.thesoz10040398
internal.identifier.thesoz10083262
internal.identifier.thesoz10040528
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo5011-5018de
internal.identifier.classoz10220
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc301
dc.identifier.doihttps://doi.org/10.22178/pos.112-12de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3417
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record