SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.112-12

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Deep Learning-Based Intrusion Detection Systems For Network Security in IoT System

[Zeitschriftenartikel]

Olobo, Neibo Augustine
Ayuba, Waliu Adebayo
Omojola, Ayogoke Felix
Iyobosa, Izevbigie Hope
Adebayo, Aderemi Ibraheem
Obi-Obuoha, Abiamamela
Afegbai, Unuigbokhai Peter

Abstract

The Internet of Things (IoT) has revolutionised various sectors, including healthcare, education, agriculture, and military applications, by enabling seamless communication and data collection among interconnected devices. However, IoT networks' open and decentralised nature exposes them to many sec... mehr

The Internet of Things (IoT) has revolutionised various sectors, including healthcare, education, agriculture, and military applications, by enabling seamless communication and data collection among interconnected devices. However, IoT networks' open and decentralised nature exposes them to many security threats and vulnerabilities. Intrusion Detection Systems (IDS) have been developed to address these challenges by identifying and mitigating malicious activities targeting these networks. Despite their importance, many organisations struggle to detect and prevent novel and sophisticated attacks effectively. This paper presents a comprehensive survey of the security issues inherent in IoT environments, emphasising the role of deep learning and machine learning techniques in enhancing IDS capabilities. By analysing existing vulnerabilities and evaluating various methodologies, we highlight the critical need for robust security measures that ensure IoT systems' reliability, privacy, and integrity. Through our findings, we advocate for integrating advanced analytical techniques in IDS to bolster defences against evolving threats in the IoT landscape.... weniger

Thesaurusschlagwörter
Bildung; Datensicherheit; computerunterstütztes Lernen; Vulnerabilität; Internet

Klassifikation
Wissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologie

Freie Schlagwörter
Intrusion Detection System; network security; deep learning; machine learning; malicious attacks; data privacy; security measures

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 5011-5018

Zeitschriftentitel
Path of Science, 10 (2024) 12

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.