Show simple item record

[journal article]

dc.contributor.authorMbanuzue, Charles Ekenede
dc.contributor.authorEkaete, Oye Oluwafunmilayode
dc.contributor.authorChukwudi, Osakwe Michaelde
dc.contributor.authorTemitope, Adefemi Oluwasegunde
dc.contributor.authorJohn, Oladejo Babatundede
dc.contributor.authorAdetola, Aderibigbe Topede
dc.date.accessioned2025-01-06T10:05:08Z
dc.date.available2025-01-06T10:05:08Z
dc.date.issued2024de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/98811
dc.description.abstractIn the ever-evolving dynamic environment of e-commerce, customer retention has become one of the main themes for any long-term successful business. This study will reveal some opportunities for applying Predictive analytics to improve customer retention strategies against such a big problem, which usually stands five to twenty-five times cheaper than acquiring new customers. This is a mixed-methods approach, including qualitative case studies intertwined with the quantitative analysis of empirical data from varied industries in e-commerce, such as fashion retail and online marketplaces. It, therefore, implies a strong positive correlation between the application of predictive analytics and customer retention rates. Businesses can use historical data and statistical algorithms to identify potential churning customers, developing targeted marketing campaigns to make them stick with the personal touch of customer experience. This study creates a financially viable impact by emphasising big data analytics, artificial intelligence, and focused marketing strategies toward creating customer value. The results denote that companies that have been able to apply predictive analytics enjoy customer satisfaction and create a better stronghold on the market. Theoretically and practically, this study contributes to an understanding of customer retention in e-commerce and aids businesses in how to apply effective practical predictive analytics strategies.de
dc.languageende
dc.subject.ddcWirtschaftde
dc.subject.ddcEconomicsen
dc.subject.otherSocial Communication; predictive analytics; customer retention; e-commerce; big data; customer loyalty; marketing strategies; customer satisfaction; data analysisde
dc.titleThe Role of Predictive Analytics in Enhancing Customer Retention Strategies in E-commercede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/download/3367/1622de
dc.source.journalPath of Science
dc.source.volume10de
dc.publisher.countryMISCde
dc.source.issue12de
dc.subject.classozMarketingde
dc.subject.classozMarketingen
dc.subject.thesozKommunikationde
dc.subject.thesozcommunicationen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozAnalysede
dc.subject.thesozanalysisen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozKundenbindungde
dc.subject.thesozcustomer tiesen
dc.subject.thesozMarketinginstrumentde
dc.subject.thesozmarketing instrumenten
dc.subject.thesozElectronic Businessde
dc.subject.thesozelectronic businessen
dc.subject.thesozZufriedenheitde
dc.subject.thesozsatisfactionen
dc.subject.thesozempirische Forschungde
dc.subject.thesozempirical researchen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10035149
internal.identifier.thesoz10043031
internal.identifier.thesoz10034712
internal.identifier.thesoz10034708
internal.identifier.thesoz10065134
internal.identifier.thesoz10051650
internal.identifier.thesoz10064514
internal.identifier.thesoz10035016
internal.identifier.thesoz10042034
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo3001-3007de
internal.identifier.classoz1090405
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc330
dc.identifier.doihttps://doi.org/10.22178/pos.112-6de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3367
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record