SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.112-6

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Role of Predictive Analytics in Enhancing Customer Retention Strategies in E-commerce

[Zeitschriftenartikel]

Mbanuzue, Charles Ekene
Ekaete, Oye Oluwafunmilayo
Chukwudi, Osakwe Michael
Temitope, Adefemi Oluwasegun
John, Oladejo Babatunde
Adetola, Aderibigbe Tope

Abstract

In the ever-evolving dynamic environment of e-commerce, customer retention has become one of the main themes for any long-term successful business. This study will reveal some opportunities for applying Predictive analytics to improve customer retention strategies against such a big problem, which u... mehr

In the ever-evolving dynamic environment of e-commerce, customer retention has become one of the main themes for any long-term successful business. This study will reveal some opportunities for applying Predictive analytics to improve customer retention strategies against such a big problem, which usually stands five to twenty-five times cheaper than acquiring new customers. This is a mixed-methods approach, including qualitative case studies intertwined with the quantitative analysis of empirical data from varied industries in e-commerce, such as fashion retail and online marketplaces. It, therefore, implies a strong positive correlation between the application of predictive analytics and customer retention rates. Businesses can use historical data and statistical algorithms to identify potential churning customers, developing targeted marketing campaigns to make them stick with the personal touch of customer experience. This study creates a financially viable impact by emphasising big data analytics, artificial intelligence, and focused marketing strategies toward creating customer value. The results denote that companies that have been able to apply predictive analytics enjoy customer satisfaction and create a better stronghold on the market. Theoretically and practically, this study contributes to an understanding of customer retention in e-commerce and aids businesses in how to apply effective practical predictive analytics strategies.... weniger

Thesaurusschlagwörter
Kommunikation; künstliche Intelligenz; Analyse; Daten; Kundenbindung; Marketinginstrument; Electronic Business; Zufriedenheit; empirische Forschung

Klassifikation
Marketing

Freie Schlagwörter
Social Communication; predictive analytics; customer retention; e-commerce; big data; customer loyalty; marketing strategies; customer satisfaction; data analysis

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 3001-3007

Zeitschriftentitel
Path of Science, 10 (2024) 12

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.