SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.14512/tatup.33.1.41

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Situativität, Funktionalität und Vertrauen: Ergebnisse einer szenariobasierten Interviewstudie zur Erklärbarkeit von KI in der Medizin

Situativity, functionality and trust: Results of a scenario-based interview study on the explainability of AI in medicine
[journal article]

Marquardt, Manuela
Graf, Philipp
Jansen, Eva
Hillmann, Stefan
Voigt-Antons, Jan-Niklas

Abstract

Eine zentrale Anforderung an den Einsatz von künstlicher Intelligenz (KI) in der Medizin ist ihre Erklärbarkeit, also die Bereitstellung von adressat*innengerechten Informationen über ihre Funktionsweise. Dies führt zu der Frage, wie eine sozial adäquate Erklärbarkeit gestaltet werden kann. Um Bew... view more

Eine zentrale Anforderung an den Einsatz von künstlicher Intelligenz (KI) in der Medizin ist ihre Erklärbarkeit, also die Bereitstellung von adressat*innengerechten Informationen über ihre Funktionsweise. Dies führt zu der Frage, wie eine sozial adäquate Erklärbarkeit gestaltet werden kann. Um Bewertungsfaktoren zu identifizieren, befragten wir Akteur*innen des Gesundheitswesens zu zwei Szenarien: Diagnostik und Dokumentation. Die Szenarien variieren den Einfluss, den ein KI‑System durch das Interaktionsdesign und die Menge der verarbeiteten Daten auf die Entscheidung hat. Wir stellen zentrale Bewertungsfaktoren für Erklärbarkeit auf interaktionaler und prozessualer Ebene dar. Erklärbarkeit darf im Behandlungsgespräch situativ nicht interferieren und die professionelle Rolle infrage stellen. Zugleich legitimiert Erklärbarkeit ein KI‑System funktional als Zweitmeinung und ist zentral für den Aufbau von Vertrauen. Eine virtuelle Verkörperung des KI‑Systems ist vorteilhaft für sprachbasierte Erklärungen.... view less


A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we in... view more

A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we interviewed healthcare stakeholders about two scenarios: diagnostics and documentation. The scenarios vary the influence that an AI system has on decision-making through the interaction design and the amount of data processed. We present key evaluation factors for explainability at the interactional and procedural levels. Explainability must not interfere situationally in the doctor-patient conversation and question the professional role. At the same time, explainability functionally legitimizes an AI system as a second opinion and is central to building trust. A virtual embodiment of the AI system is advantageous for language-based explanations.... view less

Keywords
medicine; health care delivery system; medical technology; artificial intelligence; diagnostic; documentation; confidence

Classification
Technology Assessment
Medical Sociology

Free Keywords
XAI; embodied AI; explainability; voice dialog system

Document language
German

Publication Year
2024

Page/Pages
p. 41-47

Journal
TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis / Journal for Technology Assessment in Theory and Practice, 33 (2024) 1

Issue topic
AI for decision support: What are possible futures, social impacts, regulatory options, ethical conundrums and agency constellations? / KI zur Entscheidungsunterstützung: Was sind mögliche Zukünfte, soziale Auswirkungen, regulatorische Optionen, ethische Fragen und Akteur*innenkonstellationen?

ISSN
2567-8833

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.