SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(2.971Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-92369-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A Bayesian Model for Estimating Sustainable Development Goal Indicator 4.1.2: School Completion Rates

[journal article]

Dharamshi, Ameer
Barakat, Bilal
Alkema, Leontine
Antoninis, Manos

Abstract

Estimating school completion is crucial for monitoring Sustainable Development Goal (SDG) 4 on education. The recently introduced SDG indicator 4.1.2, defined as the percentage of children aged 3–5 years above the expected completion age of a given level of education that have completed the respecti... view more

Estimating school completion is crucial for monitoring Sustainable Development Goal (SDG) 4 on education. The recently introduced SDG indicator 4.1.2, defined as the percentage of children aged 3–5 years above the expected completion age of a given level of education that have completed the respective level, differs from enrolment indicators in that it relies primarily on household surveys. This introduces a number of challenges including gaps between survey waves, conflicting estimates, age misreporting and delayed completion. We introduce the Adjusted Bayesian Completion Rates (ABCR) model to address these challenges and produce the first complete and consistent time series for SDG indicator 4.1.2, by school level and sex, for 164 countries. Validation exercises indicate that the model appears well-calibrated and offers a meaningful improvement over simpler approaches in predictive performance. The ABCR model is now used by the United Nations to monitor completion rates for all countries with available survey data.... view less

Keywords
school graduation; indicator; survey; sustainable development; estimation

Classification
Macroanalysis of the Education System, Economics of Education, Educational Policy
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Bayesian modelling; household surveys; misreporting; school completion; SDG 4; EU-SILC 2005-2017

Document language
English

Publication Year
2022

Page/Pages
p. 1822-1864

Journal
Journal of the Royal Statistical Society, Series C (Applied Statistics), 71 (2022) 5

DOI
https://doi.org/10.1111/rssc.12595

ISSN
0035-9254

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.