SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(4.225 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-89318-5

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Prediction in HRM research - A gap between rhetoric and reality

[Zeitschriftenartikel]

Sarstedt, Marko
Danks, Nicholas P.

Abstract

There are broadly two dimensions on which researchers can evaluate their statistical models: explanatory power and predictive power. Using data on job satisfaction in ageing workforces, we empirically highlight the importance of distinguishing between these two dimensions clearly by showing that a m... mehr

There are broadly two dimensions on which researchers can evaluate their statistical models: explanatory power and predictive power. Using data on job satisfaction in ageing workforces, we empirically highlight the importance of distinguishing between these two dimensions clearly by showing that a model with a certain degree of explanatory power can produce vastly different levels of predictive power and vice versa - in the same and different contexts. In a further step, we review all the papers published in three top-tier human resource management journals between 2014 and 2018 to show that researchers generally confuse explanation and prediction. Specifically, while almost all authors rely solely on explanatory power assessments (i.e., assessing whether the coefficients are significant and in the hypothesised direction), they also derive practical recommendations, which inherently result from a predictive scenario. Based on our results, we provide HRM researchers recommendations on how to improve the rigour of their explanatory studies.... weniger

Thesaurusschlagwörter
Erklärung; Prognose; Relevanz; statistische Analyse; Arbeitszufriedenheit; Berufszufriedenheit

Klassifikation
Personalwesen
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
explanation; explanatory power; generalisability; prediction; predictive power; relevance; ZA6770: International Social Survey Programme: Work Orientations IV - ISSP 2015

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 485-513

Zeitschriftentitel
Human Resource Management Journal, 32 (2022) 2

DOI
https://doi.org/10.1111/1748-8583.12400

ISSN
1748-8583

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.