SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(4.225Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-89318-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Prediction in HRM research - A gap between rhetoric and reality

[journal article]

Sarstedt, Marko
Danks, Nicholas P.

Abstract

There are broadly two dimensions on which researchers can evaluate their statistical models: explanatory power and predictive power. Using data on job satisfaction in ageing workforces, we empirically highlight the importance of distinguishing between these two dimensions clearly by showing that a m... view more

There are broadly two dimensions on which researchers can evaluate their statistical models: explanatory power and predictive power. Using data on job satisfaction in ageing workforces, we empirically highlight the importance of distinguishing between these two dimensions clearly by showing that a model with a certain degree of explanatory power can produce vastly different levels of predictive power and vice versa - in the same and different contexts. In a further step, we review all the papers published in three top-tier human resource management journals between 2014 and 2018 to show that researchers generally confuse explanation and prediction. Specifically, while almost all authors rely solely on explanatory power assessments (i.e., assessing whether the coefficients are significant and in the hypothesised direction), they also derive practical recommendations, which inherently result from a predictive scenario. Based on our results, we provide HRM researchers recommendations on how to improve the rigour of their explanatory studies.... view less

Keywords
explanation; prognosis; relevance; statistical analysis; work satisfaction; job satisfaction

Classification
Human Resources Management
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
explanation; explanatory power; generalisability; prediction; predictive power; relevance; ZA6770: International Social Survey Programme: Work Orientations IV - ISSP 2015

Document language
English

Publication Year
2022

Page/Pages
p. 485-513

Journal
Human Resource Management Journal, 32 (2022) 2

DOI
https://doi.org/10.1111/1748-8583.12400

ISSN
1748-8583

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.