SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(804.7Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-88566-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The classification of education in surveys: a generalized framework for ex-post harmonization

[journal article]

Schneider, Silke L.

Abstract

All social science (and many other) surveys measure respondents' educational attainment. However, most of them do it in different ways, resulting in incoherent education variables across surveys. This complicates the cumulation of different datasets and hampers survey data reuse. For cross-national ... view more

All social science (and many other) surveys measure respondents' educational attainment. However, most of them do it in different ways, resulting in incoherent education variables across surveys. This complicates the cumulation of different datasets and hampers survey data reuse. For cross-national surveys that are designed to be comparative from the outset, methods for ensuring comparability in the measurement of education across countries have improved substantially over the last decades, relying on ex-ante output harmonization. For ex-post harmonization, the situation is more difficult because the data have already been collected, with education measures that only partly overlap in the amount and kind of information they store about respondents' education. This results in aggregated measures when harmonizing data ex-post. Such aggregated measures may underestimate associations with education in multivariate analyses, leading to biased results. They also do not allow testing hypotheses on the effects of specific types of education, such as vocational programs. This paper presents a new framework for harmonizing education variables ex-post, building on the International Standard Classification of Education (ISCED) and experience from cross-national surveys using ex-ante harmonization. It includes a new coding scheme called 'generalized ISCED' or GISCED, and extension variables standardizing aspects of education not covered by ISCED. It proposes solutions for problems that specifically occur in ex-post harmonization, for example source categories spanning ISCED levels. The paper also shows how to apply the GISCED framework to existing data. An empirical illustration shows how detailed harmonized education measures may give insights for research and policy not possible with more aggregate measures.... view less

Keywords
survey research; data capture; harmonization; classification; level of education; data quality; comparative research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
International Standard Classification of Education (ISCED)

Document language
English

Publication Year
2022

Page/Pages
p. 1829-1866

Journal
Quality & Quantity, 56 (2022) 3

DOI
https://doi.org/10.1007/s11135-021-01101-1

ISSN
1573-7845

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.