SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(973.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-79707-0

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Using Double Machine Learning to Understand Nonresponse in the Recruitment of a Mixed-Mode Online Panel

[journal article]

Felderer, Barbara
Kueck, Jannis
Spindler, Martin

Abstract

Survey scientists increasingly face the problem of high-dimensionality in their research as digitization makes it much easier to construct high-dimensional (or "big") data sets through tools such as online surveys and mobile applications. Machine learning methods are able to handle such data, and th... view more

Survey scientists increasingly face the problem of high-dimensionality in their research as digitization makes it much easier to construct high-dimensional (or "big") data sets through tools such as online surveys and mobile applications. Machine learning methods are able to handle such data, and they have been successfully applied to solve predictive problems. However, in many situations, survey statisticians want to learn about causal relationships to draw conclusions and be able to transfer the findings of one survey to another. Standard machine learning methods provide biased estimates of such relationships. We introduce into survey statistics the double machine learning approach, which gives approximately unbiased estimators of parameters of interest, and show how it can be used to analyze survey nonresponse in a high-dimensional panel setting. The double machine learning approach here assumes unconfoundedness of variables as its identification strategy. In high-dimensional settings, where the number of potential confounders to include in the model is too large, the double machine learning approach secures valid inference by selecting the relevant confounding variables.... view less


Wissenschaftlerinnen und Wissenschaftler im Feld "Umfrageforschung" sehen sich in ihrer Forschung zunehmend mit dem Problem der hohen Dimensionalität konfrontiert, da es durch die Digitalisierung viel einfacher geworden ist, hochdimensionale (oder "große") Datensätze mit Hilfe von Tools wie Online-U... view more

Wissenschaftlerinnen und Wissenschaftler im Feld "Umfrageforschung" sehen sich in ihrer Forschung zunehmend mit dem Problem der hohen Dimensionalität konfrontiert, da es durch die Digitalisierung viel einfacher geworden ist, hochdimensionale (oder "große") Datensätze mit Hilfe von Tools wie Online-Umfragen und mobilen Anwendungen zu erstellen. Methoden des maschinellen Lernens sind in der Lage, mit solchen Daten umzugehen, und sie wurden bereits erfolgreich zur Lösung von Vorhersageproblemen eingesetzt. In vielen Situationen möchten Umfragestatistiker*innen jedoch kausale Zusammenhänge erkennen, um Schlussfolgerungen ziehen und die Ergebnisse einer Umfrage auf eine andere übertragen zu können. Standardmethoden des maschinellen Lernens liefern verzerrte Schätzungen solcher Zusammenhänge. Die Autor*innen führen in die Umfragestatistik den Ansatz des doppelten maschinellen Lernens ein, der annähernd unverzerrte Schätzer der interessierenden Parameter liefert, und zeigen, wie er zur Analyse von Umfrage-Nonresponse in einem hochdimensionalen Panel-Umfeld eingesetzt werden kann.... view less

Keywords
online survey; panel; method; digitalization; response behavior; survey research; data capture; estimation

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
machine learning; causal inference; survey nonresponse; panel dropout; GESIS panel

Document language
English

Publication Year
2023

Page/Pages
p. 461-481

Journal
Social Science Computer Review, 41 (2023) 2

DOI
https://doi.org/10.1177/08944393221095194

ISSN
1552-8286

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0

FundingGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.