SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(973.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-79707-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Using Double Machine Learning to Understand Nonresponse in the Recruitment of a Mixed-Mode Online Panel

[Zeitschriftenartikel]

Felderer, Barbara
Kueck, Jannis
Spindler, Martin

Abstract

Survey scientists increasingly face the problem of high-dimensionality in their research as digitization makes it much easier to construct high-dimensional (or "big") data sets through tools such as online surveys and mobile applications. Machine learning methods are able to handle such data, and th... mehr

Survey scientists increasingly face the problem of high-dimensionality in their research as digitization makes it much easier to construct high-dimensional (or "big") data sets through tools such as online surveys and mobile applications. Machine learning methods are able to handle such data, and they have been successfully applied to solve predictive problems. However, in many situations, survey statisticians want to learn about causal relationships to draw conclusions and be able to transfer the findings of one survey to another. Standard machine learning methods provide biased estimates of such relationships. We introduce into survey statistics the double machine learning approach, which gives approximately unbiased estimators of parameters of interest, and show how it can be used to analyze survey nonresponse in a high-dimensional panel setting. The double machine learning approach here assumes unconfoundedness of variables as its identification strategy. In high-dimensional settings, where the number of potential confounders to include in the model is too large, the double machine learning approach secures valid inference by selecting the relevant confounding variables.... weniger


Wissenschaftlerinnen und Wissenschaftler im Feld "Umfrageforschung" sehen sich in ihrer Forschung zunehmend mit dem Problem der hohen Dimensionalität konfrontiert, da es durch die Digitalisierung viel einfacher geworden ist, hochdimensionale (oder "große") Datensätze mit Hilfe von Tools wie Online-U... mehr

Wissenschaftlerinnen und Wissenschaftler im Feld "Umfrageforschung" sehen sich in ihrer Forschung zunehmend mit dem Problem der hohen Dimensionalität konfrontiert, da es durch die Digitalisierung viel einfacher geworden ist, hochdimensionale (oder "große") Datensätze mit Hilfe von Tools wie Online-Umfragen und mobilen Anwendungen zu erstellen. Methoden des maschinellen Lernens sind in der Lage, mit solchen Daten umzugehen, und sie wurden bereits erfolgreich zur Lösung von Vorhersageproblemen eingesetzt. In vielen Situationen möchten Umfragestatistiker*innen jedoch kausale Zusammenhänge erkennen, um Schlussfolgerungen ziehen und die Ergebnisse einer Umfrage auf eine andere übertragen zu können. Standardmethoden des maschinellen Lernens liefern verzerrte Schätzungen solcher Zusammenhänge. Die Autor*innen führen in die Umfragestatistik den Ansatz des doppelten maschinellen Lernens ein, der annähernd unverzerrte Schätzer der interessierenden Parameter liefert, und zeigen, wie er zur Analyse von Umfrage-Nonresponse in einem hochdimensionalen Panel-Umfeld eingesetzt werden kann.... weniger

Thesaurusschlagwörter
Antwortverhalten; Datengewinnung; Online-Befragung; Digitalisierung; Schätzung; Methode; Panel; Umfrageforschung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
machine learning; causal inference; survey nonresponse; panel dropout; GESIS panel

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
S. 461-481

Zeitschriftentitel
Social Science Computer Review, 41 (2023) 2

DOI
https://doi.org/10.1177/08944393221095194

ISSN
1552-8286

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0

FörderungGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.