Volltext herunterladen
(567.9 KB)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74965-5
Export für Ihre Literaturverwaltung
Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis
[Zeitschriftenartikel]
Abstract
Appropriate modelling of Likert-type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert-type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, t... mehr
Appropriate modelling of Likert-type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert-type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, the models separate the neutral category when modelling the effects of explanatory variables on the outcome. The main model that is propagated uses binary response models as building blocks in a hierarchical way. It has the advantage that it can be easily extended to include response style effects and non-linear smooth effects of explanatory variables. By simple transformation of the data, available software for binary response variables can be used to fit the model. The proposed hierarchical model can be used to investigate the effects of covariates on single Likert-type items and also for the analysis of a combination of items. For both cases, estimation tools are provided. The usefulness of the approach is illustrated by applying the methodology to a large data set.... weniger
Thesaurusschlagwörter
Einstellung; Messung; Methode; Modell
Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Freie Schlagwörter
djacent categories model; cumulative model; hierarchically structured models; ordinal regression; proportional odds model; sequential model; ZA5700: Pre-election Cross Section (GLES 2013)
Sprache Dokument
Englisch
Publikationsjahr
2021
Seitenangabe
S. 18-35
Zeitschriftentitel
International Statistical Review, 89 (2021) 1
DOI
https://doi.org/10.1111/insr.12396
ISSN
1751-5823
Status
Veröffentlichungsversion; begutachtet (peer reviewed)