SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(567.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74965-5

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis

[Zeitschriftenartikel]

Tutz, Gerhard

Abstract

Appropriate modelling of Likert-type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert-type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, t... mehr

Appropriate modelling of Likert-type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert-type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, the models separate the neutral category when modelling the effects of explanatory variables on the outcome. The main model that is propagated uses binary response models as building blocks in a hierarchical way. It has the advantage that it can be easily extended to include response style effects and non-linear smooth effects of explanatory variables. By simple transformation of the data, available software for binary response variables can be used to fit the model. The proposed hierarchical model can be used to investigate the effects of covariates on single Likert-type items and also for the analysis of a combination of items. For both cases, estimation tools are provided. The usefulness of the approach is illustrated by applying the methodology to a large data set.... weniger

Thesaurusschlagwörter
Einstellung; Messung; Methode; Modell

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
djacent categories model; cumulative model; hierarchically structured models; ordinal regression; proportional odds model; sequential model; ZA5700: Pre-election Cross Section (GLES 2013)

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 18-35

Zeitschriftentitel
International Statistical Review, 89 (2021) 1

DOI
https://doi.org/10.1111/insr.12396

ISSN
1751-5823

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.