SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.15465/gesis-sg_en_039

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Data Linking - Linking survey data with geospatial, social media, and sensor data (Version 1.0)

[Arbeitspapier]

Beuthner, Christoph
Breuer, Johannes
Jünger, Stefan

Körperschaftlicher Herausgeber
GESIS - Leibniz-Institut für Sozialwissenschaften

Abstract

Survey data are still the most commonly used type of data in the quantitative social sciences. However, as not everything that is of interest to social scientists can be measured via surveys, and the self-report data they provide have certain limitations, such as recollection or social desirability ... mehr

Survey data are still the most commonly used type of data in the quantitative social sciences. However, as not everything that is of interest to social scientists can be measured via surveys, and the self-report data they provide have certain limitations, such as recollection or social desirability bias, researchers have increasingly used other types of data that are not specifically created for research. These data are often called "found data" or "non-designed data" and encompass a variety of different data types. Naturally, these data have their own sets of limitations. One way of combining the unique strengths of survey data and these other data types and dealing with some of their respective limitations is to link them. This guideline first describes why linking survey data with other types of data can be useful for researchers. After that, it focuses on the linking of survey data with three types of data that are becoming increasingly popular in the social sciences: geospatial data, social media data, and sensor data. Following a discussion of the advantages and challenges associated with linking survey data with these types of data, the guideline concludes by comparing their similarities, presenting some general recommendations regarding linking surveys with other types of (found/non-designed) data, and providing an outlook on current developments in survey research with regard to data linking.... weniger

Thesaurusschlagwörter
Datengewinnung; Datenqualität

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
data linking; geospatial data; social media data; sensor data

Sprache Dokument
Englisch

Publikationsjahr
2021

Erscheinungsort
Mannheim

Seitenangabe
13 S.

Schriftenreihe
GESIS Survey Guidelines

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.