SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.15465/gesis-sg_en_039

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Data Linking - Linking survey data with geospatial, social media, and sensor data (Version 1.0)

[working paper]

Beuthner, Christoph
Breuer, Johannes
Jünger, Stefan

Corporate Editor
GESIS - Leibniz-Institut für Sozialwissenschaften

Abstract

Survey data are still the most commonly used type of data in the quantitative social sciences. However, as not everything that is of interest to social scientists can be measured via surveys, and the self-report data they provide have certain limitations, such as recollection or social desirability ... view more

Survey data are still the most commonly used type of data in the quantitative social sciences. However, as not everything that is of interest to social scientists can be measured via surveys, and the self-report data they provide have certain limitations, such as recollection or social desirability bias, researchers have increasingly used other types of data that are not specifically created for research. These data are often called "found data" or "non-designed data" and encompass a variety of different data types. Naturally, these data have their own sets of limitations. One way of combining the unique strengths of survey data and these other data types and dealing with some of their respective limitations is to link them. This guideline first describes why linking survey data with other types of data can be useful for researchers. After that, it focuses on the linking of survey data with three types of data that are becoming increasingly popular in the social sciences: geospatial data, social media data, and sensor data. Following a discussion of the advantages and challenges associated with linking survey data with these types of data, the guideline concludes by comparing their similarities, presenting some general recommendations regarding linking surveys with other types of (found/non-designed) data, and providing an outlook on current developments in survey research with regard to data linking.... view less

Keywords
data capture; data quality

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
data linking; geospatial data; social media data; sensor data

Document language
English

Publication Year
2021

City
Mannheim

Page/Pages
13 p.

Series
GESIS Survey Guidelines

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.