SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(1.920Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71217-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions

[working paper]

Knorre, Fabian
Wagner, Martin
Grupe, Maximilian

Corporate Editor
Institut für Höhere Studien (IHS), Wien

Abstract

This paper develops residual-based monitoring procedures for cointegrating polynomial regressions, i.e., regression models including deterministic variables, integrated processes as well as integer powers of integrated processes as regressors. The regressors are allowed to be endogenous and the stat... view more

This paper develops residual-based monitoring procedures for cointegrating polynomial regressions, i.e., regression models including deterministic variables, integrated processes as well as integer powers of integrated processes as regressors. The regressors are allowed to be endogenous and the stationary errors are allowed to be serially correlated. We consider five variants of monitoring statistics and develop the results for three modified least squares estimators for the parameters of the CPRs. The simulations show that using the combination of self-normalization and a moving window leads to the best performance. We use the developed monitoring statistics to assess the structural stability of environmental Kuznets curves (EKCs) for both CO2 and SO2 emissions for twelve industrialized country since the first oil price shock.... view less

Keywords
structural change; monitoring; environmental impact; industrial nation

Classification
Ecology, Environment

Free Keywords
Cointegrating Polynomial Regression; Environmental Kuznets Curve

Document language
English

Publication Year
2020

City
Wien

Page/Pages
53 p.

Series
IHS Working Paper, 27

Status
Published Version; reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.