SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.920 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71217-4

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions

[Arbeitspapier]

Knorre, Fabian
Wagner, Martin
Grupe, Maximilian

Körperschaftlicher Herausgeber
Institut für Höhere Studien (IHS), Wien

Abstract

This paper develops residual-based monitoring procedures for cointegrating polynomial regressions, i.e., regression models including deterministic variables, integrated processes as well as integer powers of integrated processes as regressors. The regressors are allowed to be endogenous and the stat... mehr

This paper develops residual-based monitoring procedures for cointegrating polynomial regressions, i.e., regression models including deterministic variables, integrated processes as well as integer powers of integrated processes as regressors. The regressors are allowed to be endogenous and the stationary errors are allowed to be serially correlated. We consider five variants of monitoring statistics and develop the results for three modified least squares estimators for the parameters of the CPRs. The simulations show that using the combination of self-normalization and a moving window leads to the best performance. We use the developed monitoring statistics to assess the structural stability of environmental Kuznets curves (EKCs) for both CO2 and SO2 emissions for twelve industrialized country since the first oil price shock.... weniger

Thesaurusschlagwörter
Strukturwandel; Monitoring; Umweltbelastung; Industriestaat

Klassifikation
Ökologie und Umwelt

Freie Schlagwörter
Cointegrating Polynomial Regression; Environmental Kuznets Curve

Sprache Dokument
Englisch

Publikationsjahr
2020

Erscheinungsort
Wien

Seitenangabe
53 S.

Schriftenreihe
IHS Working Paper, 27

Status
Veröffentlichungsversion; begutachtet

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.