SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(420.7Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-61645-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Using agent-based models to generate transformation knowledge for the German Energiewende: potentials and challenges derived from four case studies

[working paper]

Holtz, Georg
Schnülle, Christian
Yadack, Malcom
Friege, Jonas
Jensen, Thorben
Thier, Pablo
Viebahn, Peter
Chappin, Émile J.L.

Corporate Editor
Universität Bremen, Forschungszentrum Nachhaltigkeit (artec)

Abstract

The German Energiewende is a deliberate transformation of an established industrial economy towards a nearly CO2-free energy system accompanied by a phase out of nuclear energy. Its governance requires knowledge on how to steer the transition from the existing status quo to the target situation (tra... view more

The German Energiewende is a deliberate transformation of an established industrial economy towards a nearly CO2-free energy system accompanied by a phase out of nuclear energy. Its governance requires knowledge on how to steer the transition from the existing status quo to the target situation (transformation knowledge). The energy system is, however, a complex socio-technical system whose dynamics are influenced by behavioural and institutional aspects, which are badly represented by the dominant techno-economic scenario studies. In this paper we therefore investigate and identify characteristics of model studies that make agent-based modelling supportive for the generation of transformation knowledge for the Energiewende. This is done by reflecting on the experiences gained from four different applications of agent-based models. In particular, we analyse whether the studies haveimproved our understanding of policies’ impacts on the energy system, whether the knowledge derived is useful for practitioners, how valid understanding derived by the studiesis, and whether insights can be used beyond the initial case-studies. We conclude that agent-based modelling has high potential to generate transformation knowledge, but that the design of projects in which the models are developed and used is of major importance to reap this potential. Well-informed and goal-oriented stakeholder involvement and a strong collaboration between data collection and model development are crucial.... view less

Keywords
energy; energy industry; renewable energy; energy supply; economic change; climate change; technological change

Classification
Ecology, Environment
Sociology of Science, Sociology of Technology, Research on Science and Technology

Free Keywords
Energiewende; transition; transformation knowledge; agent-based model

Document language
English

Publication Year
2018

City
Bremen

Page/Pages
31 p.

Series
artec-paper, 218

ISSN
1613-4907

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.