SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(420.7 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-61645-3

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Using agent-based models to generate transformation knowledge for the German Energiewende: potentials and challenges derived from four case studies

[Arbeitspapier]

Holtz, Georg
Schnülle, Christian
Yadack, Malcom
Friege, Jonas
Jensen, Thorben
Thier, Pablo
Viebahn, Peter
Chappin, Émile J.L.

Körperschaftlicher Herausgeber
Universität Bremen, Forschungszentrum Nachhaltigkeit (artec)

Abstract

The German Energiewende is a deliberate transformation of an established industrial economy towards a nearly CO2-free energy system accompanied by a phase out of nuclear energy. Its governance requires knowledge on how to steer the transition from the existing status quo to the target situation (tra... mehr

The German Energiewende is a deliberate transformation of an established industrial economy towards a nearly CO2-free energy system accompanied by a phase out of nuclear energy. Its governance requires knowledge on how to steer the transition from the existing status quo to the target situation (transformation knowledge). The energy system is, however, a complex socio-technical system whose dynamics are influenced by behavioural and institutional aspects, which are badly represented by the dominant techno-economic scenario studies. In this paper we therefore investigate and identify characteristics of model studies that make agent-based modelling supportive for the generation of transformation knowledge for the Energiewende. This is done by reflecting on the experiences gained from four different applications of agent-based models. In particular, we analyse whether the studies haveimproved our understanding of policies’ impacts on the energy system, whether the knowledge derived is useful for practitioners, how valid understanding derived by the studiesis, and whether insights can be used beyond the initial case-studies. We conclude that agent-based modelling has high potential to generate transformation knowledge, but that the design of projects in which the models are developed and used is of major importance to reap this potential. Well-informed and goal-oriented stakeholder involvement and a strong collaboration between data collection and model development are crucial.... weniger

Thesaurusschlagwörter
Energie; Energiewirtschaft; erneuerbare Energie; Energieversorgung; ökonomischer Wandel; Klimawandel; technischer Wandel

Klassifikation
Ökologie und Umwelt
Wissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologie

Freie Schlagwörter
Energiewende; transition; transformation knowledge; agent-based model

Sprache Dokument
Englisch

Publikationsjahr
2018

Erscheinungsort
Bremen

Seitenangabe
31 S.

Schriftenreihe
artec-paper, 218

ISSN
1613-4907

Status
Veröffentlichungsversion; begutachtet

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.