Show simple item record

[journal article]

dc.contributor.authorBalzer, Michaelde
dc.contributor.authorBergherr, Elisabethde
dc.contributor.authorHutter, Swende
dc.contributor.authorHepp, Tobiasde
dc.date.accessioned2025-09-15T11:00:49Z
dc.date.available2025-09-15T11:00:49Z
dc.date.issued2025de
dc.identifier.issn1863-818Xde
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/104790
dc.description.abstractIn various real-world applications, researchers often work with compositional data which appears as proportions, amounts or rates. As a framework for dealing with the unique nature of compositional data, Dirichlet regression models have been introduced. In this article, we propose a novel model-based gradient boosting approach for Dirichlet regression models embedded in the framework of generalized additive models for location, scale and shape. This approach allows for data-driven variable selection in low- as well as high-dimensional data settings. Moreover, the implementation enables the direct calculation of marginal effects for different predictor variables. Thus, it provides an alternative estimation procedure besides the well-established approach based on the maximum likelihood principle. After conducting detailed simulation studies to evaluate the performance of the estimation procedure regarding prediction accuracy and variable selection in low- and high-dimensional settings, we present a real-world application concerning the changes in election results in the Great Recession utilizing a large-scale European dataset. Using our proposed approach, we investigate the effect of protests on voting proportions of distinct party families while identifying important socioeconomic variables and their effect on those voting proportions via variable selection.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherDirichlet regression models; Statistical learning; Gradient boosting; Great Recession; Electionsde
dc.titleGradient boosting for Dirichlet regression modelsde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalAStA Advances in Statistical Analysis
dc.publisher.countryDEUde
dc.source.issueOnline first articlesde
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionWZBde
internal.statusformal und inhaltlich fertig erschlossende
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10105
internal.identifier.journal3527
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1007/s10182-025-00526-5de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.econstor.eu/oai/request@@oai:econstor.eu:10419/318277
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record