SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1007/s10182-025-00526-5

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Gradient boosting for Dirichlet regression models

[Zeitschriftenartikel]

Balzer, Michael
Bergherr, Elisabeth
Hutter, Swen
Hepp, Tobias

Abstract

In various real-world applications, researchers often work with compositional data which appears as proportions, amounts or rates. As a framework for dealing with the unique nature of compositional data, Dirichlet regression models have been introduced. In this article, we propose a novel model-base... mehr

In various real-world applications, researchers often work with compositional data which appears as proportions, amounts or rates. As a framework for dealing with the unique nature of compositional data, Dirichlet regression models have been introduced. In this article, we propose a novel model-based gradient boosting approach for Dirichlet regression models embedded in the framework of generalized additive models for location, scale and shape. This approach allows for data-driven variable selection in low- as well as high-dimensional data settings. Moreover, the implementation enables the direct calculation of marginal effects for different predictor variables. Thus, it provides an alternative estimation procedure besides the well-established approach based on the maximum likelihood principle. After conducting detailed simulation studies to evaluate the performance of the estimation procedure regarding prediction accuracy and variable selection in low- and high-dimensional settings, we present a real-world application concerning the changes in election results in the Great Recession utilizing a large-scale European dataset. Using our proposed approach, we investigate the effect of protests on voting proportions of distinct party families while identifying important socioeconomic variables and their effect on those voting proportions via variable selection.... weniger

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Dirichlet regression models; Statistical learning; Gradient boosting; Great Recession; Elections

Sprache Dokument
Englisch

Publikationsjahr
2025

Zeitschriftentitel
AStA Advances in Statistical Analysis (2025) Online first articles

ISSN
1863-818X

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.