Show simple item record

[journal article]

dc.contributor.authorGroskurth, Katharinade
dc.contributor.authorBhaktha, Niveditade
dc.contributor.authorLechner, Clemensde
dc.date.accessioned2025-07-04T09:28:06Z
dc.date.available2025-07-04T09:28:06Z
dc.date.issued2025de
dc.identifier.issn1554-3528de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/103309
dc.description.abstractTo evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values (e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit valid judgments of model fit only in empirical settings similar to the simulation scenarios from which these cutoffs originate. This is because fit indices are not only sensitive to misspecification but are also susceptible to various model, estimation, and data characteristics. As a solution, methodologists have proposed four principal approaches to obtain so-called tailored cutoffs, which are generated specifically for a given setting. Here, we review these approaches. We find that none of these approaches provides guidelines on which fit index (out of all fit indices of interest) is best suited for evaluating whether the model fits the data in the setting of interest. Therefore, we propose a novel approach combining a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. This so-called simulation-cum-ROC approach generates tailored cutoffs and additionally identifies the most reliable fit indices in the setting of interest. We provide R code and a Shiny app for an easy implementation of the approach. No prior knowledge of Monte Carlo simulations or ROC analysis is needed to generate tailored cutoffs with the simulation-cum-ROC approach.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherConfirmatory factor analysis; Cutoff; Fit indices; ROC; Structural equation modelingde
dc.titleThe simulation-cum-ROC approach: A new approach to generate tailored cutoffs for fit indices through simulation and ROC analysisde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/local/dda-files/prod/crawlerfiles/56b748df08f6491e8eff87373dcaf81d/56b748df08f6491e8eff87373dcaf81d.pdfde
dc.source.journalBehavior Research Methods
dc.source.volume57de
dc.publisher.countryUSAde
dc.source.issue5de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.identifier.urnurn:nbn:de:0168-ssoar-103309-0
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10105
internal.identifier.journal2751
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.3758/s13428-025-02638-xde
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-1289@@56b748df08f6491e8eff87373dcaf81d


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record