SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(3.376 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-103309-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The simulation-cum-ROC approach: A new approach to generate tailored cutoffs for fit indices through simulation and ROC analysis

[Zeitschriftenartikel]

Groskurth, Katharina
Bhaktha, Nivedita
Lechner, Clemens

Abstract

To evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values (e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit valid judgments of model fit only in empirical set... mehr

To evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values (e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit valid judgments of model fit only in empirical settings similar to the simulation scenarios from which these cutoffs originate. This is because fit indices are not only sensitive to misspecification but are also susceptible to various model, estimation, and data characteristics. As a solution, methodologists have proposed four principal approaches to obtain so-called tailored cutoffs, which are generated specifically for a given setting. Here, we review these approaches. We find that none of these approaches provides guidelines on which fit index (out of all fit indices of interest) is best suited for evaluating whether the model fits the data in the setting of interest. Therefore, we propose a novel approach combining a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. This so-called simulation-cum-ROC approach generates tailored cutoffs and additionally identifies the most reliable fit indices in the setting of interest. We provide R code and a Shiny app for an easy implementation of the approach. No prior knowledge of Monte Carlo simulations or ROC analysis is needed to generate tailored cutoffs with the simulation-cum-ROC approach.... weniger

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Confirmatory factor analysis; Cutoff; Fit indices; ROC; Structural equation modeling

Sprache Dokument
Englisch

Publikationsjahr
2025

Zeitschriftentitel
Behavior Research Methods, 57 (2025) 5

DOI
https://doi.org/10.3758/s13428-025-02638-x

ISSN
1554-3528

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.