dc.contributor.author | Murray-Watters, Alexander | de |
dc.contributor.author | Zins, Stefan | de |
dc.contributor.author | Sakshaug, Joseph W. | de |
dc.contributor.author | Cornesse, Carina | de |
dc.date.accessioned | 2025-06-04T06:33:38Z | |
dc.date.available | 2025-06-04T06:33:38Z | |
dc.date.issued | 2025 | de |
dc.identifier.issn | 2001-7367 | de |
dc.identifier.uri | https://www.ssoar.info/ssoar/handle/document/102807 | |
dc.description.abstract | Data from online non-probability samples are often analyzed as if they were based on a simple random sample drawn from the general population. As the exact sampling frame for these non-probability samples are usually unknown, there is no general method to construct unbiased estimators. This raises the question of whether estimates based on online non-probability samples are consistent across sample vendors and concerning estimates based on probability samples. To address this question, we analyze data collected from eight different online non-probability sample vendors and one online probability-based sample. We find that estimates from the different non-probability samples can be very inconsistent. We suggest averaging estimates across multiple vendor samples to avoid the risk of a maximum estimation error. We evaluate several averaging approaches, including a LASSO regression procedure which identifies a subset of vendors that, when averaged, produce estimates that are more consistent with the reference probability-based estimates, compared to any single vendor. Our results show that estimates based on different vendors' samples display different selection biases, but there is also some commonality among some vendor-specific estimates, thus there could be strong gains in estimation precision by averaging across a selection of multiple non-probability sample vendors. | de |
dc.language | en | de |
dc.subject.ddc | Sozialwissenschaften, Soziologie | de |
dc.subject.ddc | Social sciences, sociology, anthropology | en |
dc.subject.other | LASSO; model-averaging; non-probability samples; regression model; sample selection bias | de |
dc.title | Averaging Non-Probability Online Surveys to Avoid Maximal Estimation Error | de |
dc.description.review | begutachtet (peer reviewed) | de |
dc.description.review | peer reviewed | en |
dc.identifier.url | localfile:/var/local/dda-files/prod/crawlerfiles/cbee8b3bc77640e3bbf2947108afb2a0/cbee8b3bc77640e3bbf2947108afb2a0.pdf | de |
dc.source.journal | Journal of Official Statistics | |
dc.source.volume | 41 | de |
dc.publisher.country | MISC | de |
dc.source.issue | 2 | de |
dc.subject.classoz | Erhebungstechniken und Analysetechniken der Sozialwissenschaften | de |
dc.subject.classoz | Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods | en |
dc.subject.thesoz | Umfrageforschung | de |
dc.subject.thesoz | survey research | en |
dc.subject.thesoz | Online-Befragung | de |
dc.subject.thesoz | online survey | en |
dc.subject.thesoz | Stichprobe | de |
dc.subject.thesoz | sample | en |
dc.subject.thesoz | Wahrscheinlichkeit | de |
dc.subject.thesoz | probability | en |
dc.subject.thesoz | Schätzung | de |
dc.subject.thesoz | estimation | en |
dc.subject.thesoz | Stichprobenfehler | de |
dc.subject.thesoz | sampling error | en |
dc.rights.licence | Creative Commons - Namensnennung 4.0 | de |
dc.rights.licence | Creative Commons - Attribution 4.0 | en |
ssoar.contributor.institution | GESIS | de |
internal.status | formal und inhaltlich fertig erschlossen | de |
internal.identifier.thesoz | 10040714 | |
internal.identifier.thesoz | 10037911 | |
internal.identifier.thesoz | 10037472 | |
internal.identifier.thesoz | 10061922 | |
internal.identifier.thesoz | 10057146 | |
internal.identifier.thesoz | 10059347 | |
dc.type.stock | article | de |
dc.type.document | Zeitschriftenartikel | de |
dc.type.document | journal article | en |
dc.source.pageinfo | 700-724 | de |
internal.identifier.classoz | 10105 | |
internal.identifier.journal | 201 | |
internal.identifier.document | 32 | |
internal.identifier.ddc | 300 | |
dc.source.issuetopic | Special Issue on Integrating data from multiple sources for production of official statistics | de |
dc.identifier.doi | https://doi.org/10.1177/0282423X241312775 | de |
dc.description.pubstatus | Veröffentlichungsversion | de |
dc.description.pubstatus | Published Version | en |
internal.identifier.licence | 16 | |
internal.identifier.pubstatus | 1 | |
internal.identifier.review | 1 | |
ssoar.wgl.collection | true | de |
internal.dda.reference | crawler-deepgreen-1278@@cbee8b3bc77640e3bbf2947108afb2a0 | |
ssoar.urn.registration | false | de |