SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/0282423X241312775

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Averaging Non-Probability Online Surveys to Avoid Maximal Estimation Error

[Zeitschriftenartikel]

Murray-Watters, Alexander
Zins, Stefan
Sakshaug, Joseph W.
Cornesse, Carina

Abstract

Data from online non-probability samples are often analyzed as if they were based on a simple random sample drawn from the general population. As the exact sampling frame for these non-probability samples are usually unknown, there is no general method to construct unbiased estimators. This raises t... mehr

Data from online non-probability samples are often analyzed as if they were based on a simple random sample drawn from the general population. As the exact sampling frame for these non-probability samples are usually unknown, there is no general method to construct unbiased estimators. This raises the question of whether estimates based on online non-probability samples are consistent across sample vendors and concerning estimates based on probability samples. To address this question, we analyze data collected from eight different online non-probability sample vendors and one online probability-based sample. We find that estimates from the different non-probability samples can be very inconsistent. We suggest averaging estimates across multiple vendor samples to avoid the risk of a maximum estimation error. We evaluate several averaging approaches, including a LASSO regression procedure which identifies a subset of vendors that, when averaged, produce estimates that are more consistent with the reference probability-based estimates, compared to any single vendor. Our results show that estimates based on different vendors' samples display different selection biases, but there is also some commonality among some vendor-specific estimates, thus there could be strong gains in estimation precision by averaging across a selection of multiple non-probability sample vendors.... weniger

Thesaurusschlagwörter
Umfrageforschung; Online-Befragung; Stichprobe; Wahrscheinlichkeit; Schätzung; Stichprobenfehler

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
LASSO; model-averaging; non-probability samples; regression model; sample selection bias

Sprache Dokument
Englisch

Publikationsjahr
2025

Seitenangabe
S. 700-724

Zeitschriftentitel
Journal of Official Statistics, 41 (2025) 2

Heftthema
Special Issue on Integrating data from multiple sources for production of official statistics

ISSN
2001-7367

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.