Show simple item record

[journal article]

dc.contributor.authorShih, Yu-Shande
dc.contributor.authorKung, Yi-Hungde
dc.date.accessioned2025-06-02T12:52:32Z
dc.date.available2025-06-02T12:52:32Z
dc.date.issued2023de
dc.identifier.issn2504-4990de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/102766
dc.description.abstractIn this article, we propose a tree-structured method for either complete or partial rank data that incorporates covariate information into the analysis. We use conditional independence tests based on hierarchical log-linear models for three-way contingency tables to select split variables and cut points, and apply a simple Bonferroni rule to declare whether a node worths splitting or not. Through simulations, we also demonstrate that the proposed method is unbiased and effective in selecting informative split variables. Our proposed method can be applied across various fields to provide a flexible and robust framework for analyzing rank data and understanding how various factors affect individual judgments on ranking. This can help improve the quality of products or services and assist with informed decision making.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherclassification and regression tree; distance-based model; independence test; selection bias; EVS 1999de
dc.titleTree-Structured Model with Unbiased Variable Selection and Interaction Detection for Ranking Datade
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalMachine Learning and Knowledge Extraction
dc.source.volume5de
dc.publisher.countryCHEde
dc.source.issue2de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozEVSde
dc.subject.thesozEVSen
dc.subject.thesozModellde
dc.subject.thesozmodelen
dc.subject.thesozRankingde
dc.subject.thesozrankingen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozSimulationde
dc.subject.thesozsimulationen
dc.identifier.urnurn:nbn:de:0168-ssoar-102766-3
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10079761
internal.identifier.thesoz10036422
internal.identifier.thesoz10042956
internal.identifier.thesoz10034708
internal.identifier.thesoz10037865
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo448-459de
internal.identifier.classoz10105
internal.identifier.journal3327
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.3390/make5020027de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record