Volltext herunterladen
(2.131 MB)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-102766-3
Export für Ihre Literaturverwaltung
Tree-Structured Model with Unbiased Variable Selection and Interaction Detection for Ranking Data
[Zeitschriftenartikel]
Abstract In this article, we propose a tree-structured method for either complete or partial rank data that incorporates covariate information into the analysis. We use conditional independence tests based on hierarchical log-linear models for three-way contingency tables to select split variables and cut po... mehr
In this article, we propose a tree-structured method for either complete or partial rank data that incorporates covariate information into the analysis. We use conditional independence tests based on hierarchical log-linear models for three-way contingency tables to select split variables and cut points, and apply a simple Bonferroni rule to declare whether a node worths splitting or not. Through simulations, we also demonstrate that the proposed method is unbiased and effective in selecting informative split variables. Our proposed method can be applied across various fields to provide a flexible and robust framework for analyzing rank data and understanding how various factors affect individual judgments on ranking. This can help improve the quality of products or services and assist with informed decision making.... weniger
Thesaurusschlagwörter
EVS; Modell; Ranking; Daten; Simulation
Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Freie Schlagwörter
classification and regression tree; distance-based model; independence test; selection bias; EVS 1999
Sprache Dokument
Englisch
Publikationsjahr
2023
Seitenangabe
S. 448-459
Zeitschriftentitel
Machine Learning and Knowledge Extraction, 5 (2023) 2
DOI
https://doi.org/10.3390/make5020027
ISSN
2504-4990
Status
Veröffentlichungsversion; begutachtet (peer reviewed)