Show simple item record

[journal article]

dc.contributor.authorAgbasiere, Chinyere Lindade
dc.contributor.authorNze-Igwe, Goodness Rexde
dc.date.accessioned2025-05-09T07:08:12Z
dc.date.available2025-05-09T07:08:12Z
dc.date.issued2025de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/102248
dc.description.abstractThe study looks into how artificial intelligence (AI) affects hiring procedures, focusing on the fairness of the algorithms that drive these tools. AI has improved the efficiency of the hiring process, yet its use results in institutionalised discrimination. The AI systems used for recruitment, which base evaluations on past performance data, have the potential to discriminate against minority candidates as well as women through unintentional actions. The ability of AI systems to decrease human biases during recruitment encounters major challenges, as Amazon's discriminatory resume screening demonstrates the issues in systemic bias maintenance. This paper discusses the origins of algorithmic bias, including biased training records, defining labels, and choosing features, and suggests debiasing methods. Methods such as reweighting, adversarial debiasing, and fairness-aware algorithms are assessed for suitability in developing unbiased AI hiring systems. A quantitative approach is used in the research, web scraping data from extensive secondary sources to assess these biases and their mitigation measures. A Fair Machine Learning (FML) theoretical framework is utilised, which introduces fairness constraints into machine learning models so that hiring models do not perpetuate present discrimination. The ethical, legal, and organisational ramifications of using AI for recruitment are further examined under GDPR and Equal Employment Opportunity law provisions. By investigating HR practitioners' experiences and AI-based recruitment data, the study aims to develop guidelines for designing open, accountable, and equitable AI-based hiring processes. The findings emphasise the value of human oversight and the necessity of regular audits to guarantee equity in AI hiring software and, consequently, encourage diversity and equal opportunity during employment.de
dc.languageende
dc.subject.ddcWirtschaftde
dc.subject.ddcEconomicsen
dc.subject.ddcTechnik, Technologiede
dc.subject.ddcTechnology (Applied sciences)en
dc.subject.otherAI recruitment; algorithmic-based fairness; Bias mitigation; human resources; Equal Employment Opportunity; Social Communicationde
dc.titleAlgorithmic Fairness in Recruitment: Designing AI-Powered Hiring Tools to Identify and Reduce Biases in Candidate Selectionde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/download/3471/1690de
dc.source.journalPath of Science
dc.source.volume11de
dc.publisher.countryMISCde
dc.source.issue4de
dc.subject.classozPersonalwesende
dc.subject.classozHuman Resources Managementen
dc.subject.classozTechnikfolgenabschätzungde
dc.subject.classozTechnology Assessmenten
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozRekrutierungde
dc.subject.thesozrecruitmenten
dc.subject.thesozArbeitsgelegenheitde
dc.subject.thesozemployment opportunityen
dc.subject.thesozKommunikationde
dc.subject.thesozcommunicationen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043031
internal.identifier.thesoz10035821
internal.identifier.thesoz10067980
internal.identifier.thesoz10035149
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo5001-5021de
internal.identifier.classoz1090402
internal.identifier.classoz20800
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc330
internal.identifier.ddc600
dc.identifier.doihttps://doi.org/10.22178/pos.116-10de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3471
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record