SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.22178/pos.116-10

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Algorithmic Fairness in Recruitment: Designing AI-Powered Hiring Tools to Identify and Reduce Biases in Candidate Selection

[journal article]

Agbasiere, Chinyere Linda
Nze-Igwe, Goodness Rex

Abstract

The study looks into how artificial intelligence (AI) affects hiring procedures, focusing on the fairness of the algorithms that drive these tools. AI has improved the efficiency of the hiring process, yet its use results in institutionalised discrimination. The AI systems used for recruitment, whic... view more

The study looks into how artificial intelligence (AI) affects hiring procedures, focusing on the fairness of the algorithms that drive these tools. AI has improved the efficiency of the hiring process, yet its use results in institutionalised discrimination. The AI systems used for recruitment, which base evaluations on past performance data, have the potential to discriminate against minority candidates as well as women through unintentional actions. The ability of AI systems to decrease human biases during recruitment encounters major challenges, as Amazon's discriminatory resume screening demonstrates the issues in systemic bias maintenance. This paper discusses the origins of algorithmic bias, including biased training records, defining labels, and choosing features, and suggests debiasing methods. Methods such as reweighting, adversarial debiasing, and fairness-aware algorithms are assessed for suitability in developing unbiased AI hiring systems. A quantitative approach is used in the research, web scraping data from extensive secondary sources to assess these biases and their mitigation measures. A Fair Machine Learning (FML) theoretical framework is utilised, which introduces fairness constraints into machine learning models so that hiring models do not perpetuate present discrimination. The ethical, legal, and organisational ramifications of using AI for recruitment are further examined under GDPR and Equal Employment Opportunity law provisions. By investigating HR practitioners' experiences and AI-based recruitment data, the study aims to develop guidelines for designing open, accountable, and equitable AI-based hiring processes. The findings emphasise the value of human oversight and the necessity of regular audits to guarantee equity in AI hiring software and, consequently, encourage diversity and equal opportunity during employment.... view less

Keywords
artificial intelligence; recruitment; employment opportunity; communication

Classification
Human Resources Management
Technology Assessment

Free Keywords
AI recruitment; algorithmic-based fairness; Bias mitigation; human resources; Equal Employment Opportunity; Social Communication

Document language
English

Publication Year
2025

Page/Pages
p. 5001-5021

Journal
Path of Science, 11 (2025) 4

ISSN
2413-9009

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.