Show simple item record

[journal article]

dc.contributor.authorKern, Christophde
dc.contributor.authorHöhne, Jan Karemde
dc.contributor.authorSchlosser, Stephande
dc.contributor.authorRevilla, Melaniede
dc.date.accessioned2025-04-28T13:03:23Z
dc.date.available2025-04-28T13:03:23Z
dc.date.issued2021de
dc.identifier.issn1552-8286de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/101903
dc.description.abstractThis study utilizes acceleration data from smartphone sensors to predict motion conditions of smartphone respondents. Specifically, we predict whether respondents are moving or nonmoving on a survey page level to learn about distractions and the situational conditions under which respondents complete smartphone surveys. The predicted motion conditions allow us to (1) estimate the proportion of smartphone respondents who are moving during survey completion and (2) compare the response behavior of moving and nonmoving respondents. Our analytical strategy consists of two steps. First, we use data from a lab experiment that systematically varied motion conditions of smartphone respondents and train a prediction model that is able to accurately infer respondents' motion conditions based on acceleration data. Second, we use the trained model to predict motion conditions of respondents in two cross-sectional surveys in order to compare response behavior of respondents with different motion conditions in a field setting. Our results indicate that active movement during survey completion is a relatively rare phenomenon, as only about 3%-4% of respondents were predicted as moving in both cross-sectional surveys. When comparing respondents based on their predicted motion conditions, we observe longer completion times of moving respondents. However, we observe little differences when comparing moving and nonmoving respondents with respect to indicators of superficial responding, indicating that moving during survey completion does not pose a severe threat to data quality.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otheracceleration data; machine learning; multitasking; smartphone surveys; survey motionde
dc.titleCompletion Conditions and Response Behavior in Smartphone Surveys: A Prediction Approach Using Acceleration Datade
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalSocial Science Computer Review
dc.source.volume39de
dc.publisher.countryUSAde
dc.source.issue6de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozUmfrageforschungde
dc.subject.thesozsurvey researchen
dc.subject.thesozOnline-Befragungde
dc.subject.thesozonline surveyen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozAntwortverhaltende
dc.subject.thesozresponse behavioren
dc.subject.thesozDatenqualitätde
dc.subject.thesozdata qualityen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10040714
internal.identifier.thesoz10037911
internal.identifier.thesoz10040547
internal.identifier.thesoz10035808
internal.identifier.thesoz10055811
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo1253-1271de
internal.identifier.classoz10105
internal.identifier.journal645
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1177/0894439320971233de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record