SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/0894439320971233

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Completion Conditions and Response Behavior in Smartphone Surveys: A Prediction Approach Using Acceleration Data

[Zeitschriftenartikel]

Kern, Christoph
Höhne, Jan Karem
Schlosser, Stephan
Revilla, Melanie

Abstract

This study utilizes acceleration data from smartphone sensors to predict motion conditions of smartphone respondents. Specifically, we predict whether respondents are moving or nonmoving on a survey page level to learn about distractions and the situational conditions under which respondents complet... mehr

This study utilizes acceleration data from smartphone sensors to predict motion conditions of smartphone respondents. Specifically, we predict whether respondents are moving or nonmoving on a survey page level to learn about distractions and the situational conditions under which respondents complete smartphone surveys. The predicted motion conditions allow us to (1) estimate the proportion of smartphone respondents who are moving during survey completion and (2) compare the response behavior of moving and nonmoving respondents. Our analytical strategy consists of two steps. First, we use data from a lab experiment that systematically varied motion conditions of smartphone respondents and train a prediction model that is able to accurately infer respondents' motion conditions based on acceleration data. Second, we use the trained model to predict motion conditions of respondents in two cross-sectional surveys in order to compare response behavior of respondents with different motion conditions in a field setting. Our results indicate that active movement during survey completion is a relatively rare phenomenon, as only about 3%-4% of respondents were predicted as moving in both cross-sectional surveys. When comparing respondents based on their predicted motion conditions, we observe longer completion times of moving respondents. However, we observe little differences when comparing moving and nonmoving respondents with respect to indicators of superficial responding, indicating that moving during survey completion does not pose a severe threat to data quality.... weniger

Thesaurusschlagwörter
Umfrageforschung; Online-Befragung; Datengewinnung; Antwortverhalten; Datenqualität

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
acceleration data; machine learning; multitasking; smartphone surveys; survey motion

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 1253-1271

Zeitschriftentitel
Social Science Computer Review, 39 (2021) 6

ISSN
1552-8286

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.